TOPOLOGICAL RATIONALIZATION
OF A CLASS OF MEROMORPHIC FUNCTIONS

A. MEZIANI

(Communicated by Clifford J. Earle, Jr.)

Abstract. We prove that a class of germs at $0 \in \mathbb{C}^2$ of meromorphic functions can be transformed, via homeomorphisms, into rational functions.

0. Introduction

We prove in this note that if $M(x, y)$ is the germ at $0 \in \mathbb{C}^2$ of a pure meromorphic function whose blow-up $\tilde{M} = M \circ E$, where E is the blow-up of \mathbb{C}^2 at 0, has no essential singularities on $E^{-1}(0)$, then M is topologically conjugate to a rational function $R(x, y)$. That is, there is a homeomorphism Φ of a neighborhood of $0 \in \mathbb{C}^2$ such that $M \circ \Phi = R$.

D. Cerveau and J. F. Mattei have studied [1] finite determination for multiform functions. In particular, they prove rationalization for germs of meromorphic functions with critical set reduced to $\{0\}$. They also show that germs at $0 \in \mathbb{C}^2$ of holomorphic functions are conjugate to polynomials.

We begin this note by recalling briefly the blow-up of \mathbb{C}^2 at 0, and then we define the class of meromorphic functions that we will be dealing with. Next, we prove an intermediate result: a particular conjugation of germs of analytic varieties. Finally, we state and prove the main result.

1. Definitions

In this section, we recall very briefly the blow-up of \mathbb{C}^2 at 0 (see [4]) and define a class of meromorphic functions, called here class A. Some examples will follow.

The blow-up of \mathbb{C}^2 at 0 is the subset of $\mathbb{C}^2 \times \mathbb{CP}^1$, where \mathbb{CP}^1 is the complex projective space of dimension 1, given as

$$\mathbb{C}^2_0 = \{(p, [p]) \in (\mathbb{C}^2 - \{0\}) \times \mathbb{CP}^1\} \cup \{0\} \times \mathbb{CP}^1,$$

where $[\cdot] : \mathbb{C}^2 - \{0\} \rightarrow \mathbb{CP}^1$ is the quotient map. It is shown, in [4] for example, that \mathbb{C}^2_0 is a two-dimensional complex manifold. Moreover, \mathbb{C}^2_0 is covered by

Received by the editors April 3, 1989.
two charts \((x, t, (s, y))\) \((t, s)\) are the canonical coordinates of \(\mathbb{CP}^1\) related by
\[
s = \frac{1}{t} \quad \text{and} \quad y = xt.
\]

The first projection \(E: \mathbb{C}^2_0 \hookrightarrow \mathbb{C}^2\), called the blow-up map, is given in the charts \((x, t), (s, y)\) by
\[
E(x, t) = (x, xt) \quad \text{and} \quad E(s, y) = (sy, y).
\]

\(E\) is a biholomorphism from \(\mathbb{C}^2_{0} - E^{-1}(0)\) onto \(\mathbb{C}^2 - \{0\}\). The exceptional divisor \(E^{-1}(0)\) is identified with \(\mathbb{CP}^1\).

A meromorphic function \(M\) on a two-dimensional complex manifold \(\mathcal{M}\) is said to have an essential singularity at \(p_0 \in \mathcal{M}\) if, near \(p_0\), the function \(M\) is expressed as a quotient \(\alpha/\beta\), with \(\alpha, \beta\) germs at \(p_0\) of coprime holomorphic functions and \(\alpha(p_0) = \beta(p_0) = 0\). Equivalently, \(M\) has an essential singularity at \(p_0\) if, in a neighborhood of \(p_0\), all the level sets of \(M\) pass through \(p_0\). In this case, as in [1], we say that \(M\) is a pure meromorphic function at \(p_0\).

Definition 1.1. A germ at \(0 \in \mathbb{C}^2\) of a pure meromorphic function \(M(x, y)\) is said to be in the class \(A\) if the map \(\widetilde{M} = M \circ E: \mathbb{C}^2_0 \hookrightarrow \mathbb{C}\), defined in a neighborhood of \(E^{-1}(0) = \mathbb{CP}^1 \subset \mathbb{C}^2_0\), has no essential singularities.

Remark 1.1. It is easy to see, as a consequence of the desingularization of foliations defined by level sets of meromorphic functions (see [3] for example), that if \(M\) is the germ at \(0 \in \mathbb{C}^2\) of a pure meromorphic function, then there is a proper holomorphic map \(\Pi: \mathcal{M} \hookrightarrow \mathbb{C}^2\), obtained by composition of blow-ups, such that the lift \(M \circ \Pi\) of \(M\) to \(\mathcal{M}\) has no essential singularities. Hence, the class \(A\) is the set of all meromorphic functions for which \(\mathcal{M} = \mathbb{C}^2\).

Example 1. The function
\[
M(x, y) = \frac{x^3 + xy^2 + \alpha(x, y)}{y^3 + \beta(x, y)},
\]
where \(\alpha, \beta\) are holomorphic functions of order \(\geq 4\), is in the class \(A\). The blow-up of \(M\) is given in the charts \((x, t), (s, y)\) respectively by
\[
\widetilde{M}(x, t) = \frac{1 + t^2 + \left(\alpha(x, tx)/x^3\right)}{y^3 + \left(\beta(x, tx)/x^3\right)}, \quad \widetilde{M}(s, y) = \frac{s^3 + s + \left(\alpha(sy, y)/y^3\right)}{1 + \left(\beta(sy, y)/y^3\right)}.
\]
So \(\widetilde{M}\) has no essential singularities on \(\mathbb{CP}^1 = \{x = 0\} \cup \{y = 0\}\).

Example 2. The meromorphic function \(M(x, y) = (y^2 + x^3)/xy\) is not in the class \(A\). Its blow-up \(\widetilde{M}(x, t) = (t^2 + x)/t\) has an essential singularity at \((x = 0, t = 0)\). A blow-up of \(\mathbb{C}^2_0\) at \((x = 0, t = 0)\) will produce a meromorphic function with no essential singularities.
Remark 1.2. The functions of the form x^r/y^s, where r, s are positive integers and $r > s$, are not in the class A. However, we characterized in [3] all meromorphic functions that are conjugate to the rational functions of the form $R(x^r/y^s)$, where R is a rational function on \mathbb{C}.

The following proposition characterizes the class A.

Proposition 1.1. Let $M(x, y) = \alpha(x, y)/\beta(x, y)$ be the germ at $0 \in \mathbb{C}^2$ of a pure meromorphic function and let

$$\alpha(x, y) = \sum_{i \geq n} P_i(x, y)$$

and

$$\beta(x, y) = \sum_{j \geq m} Q_j(x, y)$$

be the Taylor expansions of α and β (P_i and Q_j are homogeneous polynomials with respective degrees i and j). Then M is in the class A if and only if $n = m$ and P_n, Q_n are coprime.

Proof. We first show that if $n = m$ and P_n, Q_n are coprime, then M is in the class A. The blow-up $\widetilde{M} = M \circ E$ of M is given in the charts (x, t), (s, y) by

$$\widetilde{M}(x, t) = \frac{P_n(1, t) + xP_{n+1}(1, t) + \ldots}{Q_n(1, t) + xQ_{n+1}(1, t) + \ldots},$$

$$\widetilde{M}(s, y) = \frac{P_n(s, 1) + yP_{n+1}(s, 1) + \ldots}{Q_n(s, 1) + yQ_{n+1}(s, 1) + \ldots}.$$

Since $P_n(1, t)$ and $Q_n(1, t)$ (resp. $P_n(s, 1)$ and $Q_n(s, 1)$) have no common root, then \widetilde{M} has no essential singularities on $E^{-1}(0)$.

Conversely, let us show that if M is in the class A, then $n = m$ and P_n, Q_n are coprime. By contradiction, first if $n = m + k > m$, then

$$\widetilde{M}(x, t) = \frac{x^k(P_{m+k}(1, t) + xP_{m+k+1}(1, t) + \ldots)}{Q_m(1, t) + xQ_{m+1}(1, t) + \ldots},$$

$$\widetilde{M}(s, y) = \frac{y^k(P_{m+k}(s, 1) + yP_{m+k+1}(s, 1) + \ldots)}{Q_m(s, 1) + yQ_{m+1}(s, 1) + \ldots}.$$

So, if t_0 (resp. s_0) is a root of $Q_m(1, t)$ (resp. $Q_m(s, 1)$), then the point $(x = 0, t = t_0)$ (resp. $(s = s_0, y = 0)$) would be an essential singularity of \widetilde{M}. The second eventuality, $n = m$ and P_n, Q_n are not coprime, also cannot occur. Indeed, $P_n(1, t)$ and $Q_n(1, t)$ would have a common root t_0, and then

$$\widetilde{M}(x, t) = \frac{P_n(1, t) + xP_{n+1}(1, t) + \ldots}{Q_n(1, t) + xQ_{n+1}(1, t) + \ldots} = \frac{(t-t_0)P_n^*(1, t) + xP_{n+1}(1, t) + \ldots}{(t-t_0)Q_n^*(1, t) + xQ_{n+1}(1, t) + \ldots}$$

would have an essential singularity at $(x = 0, t = t_0)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
2. AN INTERMEDIATE RESULT

We prove in this section the existence of a particular homeomorphism between two germs of analytic varieties that coincide to high order at $0 \in \mathbb{C}^2$. We will denote by C_c the complex line in \mathbb{C}^2 given by $y = cx$, where c is a complex number.

Proposition 2.1. Let $f(x, y)$ be the germ at $0 \in \mathbb{C}^2$ of a holomorphic function and let $f_k(x, y)$ be its kth jet. Define

$$V(f) = \{(x, y); f(x, y) = 0\} \quad \text{and} \quad V(f_k) = \{(x, y); f_k(x, y) = 0\}.$$

Then, for k large enough, there is a germ of a homeomorphism Φ at $0 \in \mathbb{C}^2$ such that

$$\Phi(V(f)) = V(f_k) \quad \text{and} \quad \Phi(C_c) = C_c$$

for every $c \in \mathbb{C}$.

The proof of this proposition is based upon some lemmas.

Lemma 2.1. Consider a family $D(p_i, r_i), i = 1, \ldots, N$, of N disjoint discs in the plane \mathbb{R}^2, with respective centers p_i and radii r_i. For every i, let q_i be a point in $D(p_i, r_i)$. Then there is a homeomorphism $\phi: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that:

$$\phi(p) = p \quad \text{if} \quad p \notin \bigcup_{i=1}^{N} D(p_i, r_i)$$

$$\phi(p_i) = q_i \quad \text{for} \quad i = 1, \ldots, N.$$

We leave the elementary proof of this result to the reader.

Lemma 2.2. Let $f(x, y)$ be the germ at $0 \in \mathbb{C}^2$ of an irreducible holomorphic function of order n. Then, we can assume, after a linear change of coordinates, that

$$f(x, y) = y^n + P_{n+1}(x, y) + \ldots + P_{n+k}(x, y) + \ldots ,$$

where the P_{n+j}'s are homogeneous polynomials of degree $n + j$. Furthermore, if $n > 1$, then there is a k such that $P_{n+k}(x, 0)$ is not identically zero.

Proof. The Taylor expansion of f is $f(x, y) = \sum_{j \geq n} P_j(x, y)$, where the P_j's are homogeneous polynomials of degree j. Recall from [4] that the irreducibility of f implies that the tangent cone of the variety $\{(x, y); f(x, y) = 0\}$ is reduced to a point. That is, the set of points on \mathbb{CP}^1 on which $P_n(1, t)$ or $P_n(s, 1) = 0$ is reduced to one point. We can assume, after a linear change of coordinates if necessary, that $s = 0$ is not a root of $P_n(s, 1)$. So, the irreducibility of f implies that $P_n(1, t) = (t - t_0)^i$ for some $t_0 \in \mathbb{C}$ and $i \leq n$. By a linear change of coordinates, we can assume $t_0 = 0$. Now, if $n > i$, then $P_n(s, 1) = s^{n-i}$ would have a root at $s = 0$, and this is impossible. So $i = n$ and $P_n(x, y) = y^n$. Finally, if $n > 1$ and $P_{n+j}(x, 0) = 0$ for every...
$j \geq 1$, then y would be a factor of f and f would be reducible. The lemma is proved. \hfill \Box

Lemma 2.3. Let $f(x, y) = y^n + P_{n+1}(x, y) + \ldots + P_{n+k}(x, y) + \ldots$, be an irreducible holomorphic function and k be the first integer such that $P_{n+k}(x, 0) \neq 0$. Then there is a positive constant K such that, for every $c \in \mathbb{C}$, $0 < |c| < K$, the variety $V(f) = \{f = 0\}$ intersects the line C_c at 0 and k other points $p^1(c), \ldots, p^k(c)$ which vary continuously with c and $p^1(0) = \ldots = p^k(0) = 0$.

Proof. Let c be fixed in \mathbb{C}. Then

$$V(f) \cap C_c = \{(x, cx) \in \mathbb{C}^2 ; f(x, cx) = 0\},$$

i.e., $V(f) \cap C_c$ is given by the equation

$$x^n(c^n + P_{n+1}(1, c)x + \ldots + P_{n+k}(1, c)x^k + \ldots) = 0.$$

Since $P_{n+j}(1, 0) = 0$ if $j < k$ and $P_{n+k}(1, 0) \neq 0$, then similar arguments as that used in the proof of Theorem 4.13 of Chapter 2 in [2] and the irreducibility of f show that the equation

$$c^n + P_{n+1}(1, c)x + \ldots + P_{n+k}(1, c)x^k + \ldots = 0$$

has k distinct and continuous roots $p^1(c), \ldots, p^k(c)$, provided that $c \neq 0$ is sufficiently small and $p^1(0) = \ldots = p^k(0) = 0$. \hfill \Box

Proof of the proposition. We start by proving the proposition in the case where the tangent cone of $V(f)$ is reduced to one point. Let $K > 0$ be such that, for every $c \in \mathbb{C}$, $0 < |c| < K$, we have

$$V(f) \cap C_c = \{0, p^1(c), \ldots, p^k(c)\}$$

(see Lemma 2.3). Consider the homotopy

$$g_t = f + t(f_1 - f), \quad 0 \leq t \leq 1,$$

where f_1 is the lth jet of f. Since f and g_t coincide to order l at 0, then, for l sufficiently large, we also have

$$V(g_t) \cap C_c = \{0, p^1_t(c), \ldots, p^k_t(c)\},$$

and the functions $p^j_t(c)$'s are continuous in c and t. So, for every j, we can find a continuous function $r_j(c)$, $r_j(c) > 0$ and $r_j(0) = 0$ such that

$$\{p^j_t(c), 0 \leq t \leq 1\} \subset D\left(p^j_t(c), r_j(c)\right)$$

and

$$D\left(p^j_t(c), r_j(c)\right) \cap D\left(p^i_t(c), r_i(c)\right) = \emptyset \quad \text{if } j \neq i.$$
Next, for \(c \) fixed, \(|c| < K \), consider, as in Lemma 2.1, a homeomorphism \(\phi_c \) of the complex line \(\mathbb{C}_c \) such that

\[
\phi_c(p) = p \quad \text{if } p \in \mathbb{C}_c - \bigcup_{i=1}^{k} D\left(p^i(c), r_i(c)\right),
\]
\[
\phi_c\left(p^i(c)\right) = p^i_1(c) \quad \text{for } i = 1, \ldots, k.
\]

Note that if \(U \) is a small neighborhood of \(0 \in \mathbb{C}^2 \) and \(c \) is such that \(K/2 < |c| < K \), then \(\phi_c(p) = p \) if \(p \in U \cap \mathbb{C}_c \). So, we can define a homeomorphism \(\Phi: (\mathbb{C}^2, 0) \leftrightarrow (\mathbb{C}^2, 0) \) by

\[
\Phi(p) = p \quad \text{if } p \notin \{(x, y) : y = cx \text{ and } |c| < K\}
\]
\[
\Phi(p) = \phi_c(p) \quad \text{if } p \in \mathbb{C}_c \text{ and } |c| < K.
\]

In this case \(\Phi \) is the desired homeomorphism of the proposition.

In the general case, the tangent cone of \(V(f) \) is not necessarily reduced to a point; we decompose

\[
V(f) = V^1 \cup \ldots \cup V^N,
\]

where each \(V^j \) has a tangent cone reduced to a point \(a_j \). Similarly, we decompose

\[
V(f_k) = V^1_k \cup \ldots \cup V^N_k,
\]

where the tangent cone of \(V^j_k \) is the point \(a_j \). By reducing the neighborhood \(U \) of \(0 \in \mathbb{C}^2 \), we can assume that, for every \(j \), there is a \(K_j \) such that \(V^j \cap \mathbb{C}_c = \{0\} \) if \(|c - a_j| \geq K_j \) and the discs \(D(a_j, K_j) \) are mutually disjoint. Now we can define a homeomorphism \(\Phi \) as follows:

\[
\Phi(p) = p \quad \text{if } p \notin \bigcup_{j=1}^{N} \{(x, y) : y = cx \text{ and } |c - a_j| \geq K_j\}
\]
\[
\Phi(p) = \Phi_j(p) \quad \text{if } p \in \{(x, y) : y = cx \text{ and } |c - a_j| < K_j\},
\]

where \(\Phi_j \) is a homeomorphism, as in the previous case, corresponding to \(V^j \). The proposition is therefore proved.

3. Statement and proof of the main result

Theorem. Let \(M(x, y) \) be the germ at \(0 \in \mathbb{C}^2 \) of a meromorphic function in the class \(A \). Then \(M \) is topologically conjugate to a rational function.

The proof of this result needs two lemmas. First, we adopt the following notation: if \(V(f) \) is the germ of the variety \(\{f = 0\} \), we will denote by \(\tilde{V}(f) \) the closure in \(\mathbb{C}^2_0 \) of \(E^{-1}(V(f) - \{0\}) \). Also, we will say that two varieties \(V(f) \) and \(V(g) \) coincide to order \(k \) if their defining functions \(f \) and \(g \) coincide to order \(k \) at \(0 \).
Lemma 3.1. Let f and g be germs of irreducible holomorphic functions of order j at $0 \in C^2$. Suppose that f and g coincide to order k ($k > j$) at 0. Then $\widetilde{V}(f)$ and $\widetilde{V}(g)$ coincide to order $k-j$ on $E^{-1}(0)$.

Proof. Without loss of generality, we can assume that the tangent cone of $V(f)$ or $V(g)$ is not the point $(s = 0, y = 0)$. So the varieties $\widetilde{V}(f)$ and $\widetilde{V}(g)$ admit, respectively, $\tilde{f}(x, t) = f(x, tx)/x^j$ and $\tilde{g}(x, t) = g(x, tx)/x^j$ as defining functions. Therefore, it follows from the fact that f and g coincide to order k at 0, that $\tilde{f}(x, t)$ and $\tilde{g}(x, t)$ coincide to order $k-j$ on $E^{-1}(0)$.

Lemma 3.2. Suppose that A, B are germs of holomorphic functions that coincide to order k_1 and $V(f), V(g)$ are germs of analytic varieties that coincide to order k_2 at $0 \in C^2$. Then the images via the maps $F(x, y) = (x, A(x, y))$ and $G(x, y) = (x, B(x, y))$ of, respectively, $V(f)$ and $V(g)$ coincide to an order $\nu(k_1, k_2)$, where ν increases with k_1, k_2.

Proof. Let p be the order of f and g at 0. Then a parametrization of $V(f)$ (resp. $V(g)$) is (see [4])

$$
\begin{align*}
(x = f^p, y = a(t)) & \quad \text{(resp. } (x = f^p, y = b(t))) \end{align*}
$$

where a, b are holomorphic functions of order $\geq p + 1$. Moreover, it follows from the fact that f and g coincide to order k_2 that a and b coincide to an order $\eta(k_2)$, where η increases with k_2. The parametrization of $F(V(f))$ (resp. $G(V(g))$) is

$$
\begin{align*}
(x = f^p, y = A(t^p, a(t))) & \quad \text{(resp. } (x = f^p, y = B(t^p, b(t)))) \end{align*}
$$

The conclusion follows from the fact that A, B coincide to order k_1 and a, b coincide to order $\eta(k_2)$. □

Proof of the theorem. We write

$$
M(x, y) = \frac{a(x, y)}{\beta(x, y)} = \frac{\sum_{j \geq n} P_j(x, y)}{\sum_{j \geq n} Q_j(x, y)},
$$

where P_j, Q_j are homogeneous polynomials of degree j and P_n, Q_n coprime. For $k > n$, define the rational function R_k by

$$
R_k(x, y) = \frac{a_k(x, y)}{\beta_k(x, y)} = \frac{\sum_{j = n}^k P_j(x, y)}{\sum_{j = n}^k Q_j(x, y)}.
$$

Note that the blow-up \widetilde{M} of M coincides on $E^{-1}(0)$ with the blow-up \widetilde{R}_k of R_k, it is

$$
\widetilde{M}(0, t) = \widetilde{R}_k(0, t) = \frac{P_n(1, t)}{Q_n(1, t)}.
$$
Consider the maps $\mathcal{P}: \mathbb{C}^2_0 \to \mathbb{C}^2_0$ and $\mathcal{P}_k: \mathbb{C}^2_0 \to \mathbb{C}^2_0$, defined in the charts $(x, t), (s, y)$ by

$$\mathcal{P}(x, t) = \left(x, \tilde{M}(x, t)\right) \quad \text{and} \quad \mathcal{P}_k(s, y) = \left(\frac{1}{\tilde{M}(sy, 1/s)}, sy\tilde{M}(sy, 1/s)\right),$$

$$\mathcal{P}_k(x, t) = \left(x, \tilde{R}_k(x, t)\right) \quad \text{and} \quad \mathcal{P}_k(s, y) = \left(\frac{1}{\tilde{R}_k(sy, 1/s)}, sy\tilde{R}_k(sy, 1/s)\right).$$

Note that the meromorphic map \mathcal{P} (resp. \mathcal{P}_k) is holomorphic outside the variety $\{\tilde{M} = \infty\}$ (resp. $\{\tilde{R}_k = \infty\}$). Since the jacobian of \mathcal{P} (resp. \mathcal{P}_k), in the chart (x, t), vanishes only on the variety

$$X = \left\{(x, t); \frac{\partial \tilde{M}}{\partial t} = 0\right\} \quad \text{(resp. } X_k = \left\{(x, t); \frac{\partial \tilde{R}_k}{\partial t} = 0\right\}),$$

then \mathcal{P} (resp. \mathcal{P}_k) is a covering outside X (resp. X_k) whose number of sheets is the multiplicity of $\tilde{M}(0, t)$. Since

$$E(X) = \left\{(x, y); \beta \frac{\partial \alpha}{\partial y} - \alpha \frac{\partial \beta}{\partial y} = 0\right\}$$

and

$$E(X_k) = \left\{(x, y); \beta_k \frac{\partial \alpha_k}{\partial y} - \alpha_k \frac{\partial \beta_k}{\partial y} = 0\right\}$$

and the functions $\beta \frac{\partial \alpha}{\partial y} - \alpha \frac{\partial \beta}{\partial y}, \beta_k \frac{\partial \alpha_k}{\partial y} - \alpha_k \frac{\partial \beta_k}{\partial y}$ coincide to order $2k - 1$, then X and X_k coincide to an order $\eta(k)$ (see Lemma 3.1). Therefore the varieties $W = \mathcal{P}(X)$ and $W_k = \mathcal{P}_k(X_k)$ coincide to a certain order $\mu(k)$, and μ increases with k (see Lemma 3.2).

Now, it follows from Proposition 2.1 that if k is large enough, then there is a homeomorphism $\Psi: (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ such that

$$\tilde{\Psi}(W) = W_k \quad \text{and} \quad \tilde{\Psi}\left(\{(x, t); t = t_0\}\right) = \{(x, t); t = t_0\},$$

for every constant t_0. Next, since \mathcal{P} (resp. \mathcal{P}_k) maps the analytic varieties $\tilde{M}^{-1}(\tilde{M}(x_0, t_0))$ (resp. $\tilde{R}_k^{-1}(\tilde{R}_k(x_0, t_0))$) into the complex line $t = t_0$, there is a homeomorphism Φ such that the diagram

$$\begin{array}{ccc}
\mathbb{C}^2_0, X & \xrightarrow{\Phi} & \mathbb{C}^2_0, X_k \\
\downarrow & & \downarrow \mathcal{P}_k \\
\mathbb{C}^2_0, W & \xrightarrow{\tilde{\Psi}} & \mathbb{C}^2_0, W_k
\end{array}$$

commutes, i.e., $\tilde{\Phi}$ conjugates the foliation defined by the level sets of \tilde{M} to that defined by the level sets of \tilde{R}_k. Since $\tilde{M} = \tilde{R}_k$ on $E^{-1}(0)$ and $\tilde{\Psi}$ is the identity on $E^{-1}(0)$, then Φ can be chosen to be the identity on $E^{-1}(0)$. Finally, the homeomorphism $\Phi = E \circ \tilde{\Phi} \circ E^{-1}$, defined in a neighborhood of $0 \in \mathbb{C}^2$, conjugates R_k with M, i.e., $R_k \circ \Phi = M$. The theorem is proved. \(\square\)
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY PARK, FIU, MIAMI, FLORIDA 33199