Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nonoscillatory solutions of second order differential equations with integrable coefficients


Author: Manabu Naito
Journal: Proc. Amer. Math. Soc. 109 (1990), 769-774
MSC: Primary 34C10; Secondary 34C11
DOI: https://doi.org/10.1090/S0002-9939-1990-1019278-2
MathSciNet review: 1019278
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The asymptotic behavior of nonoscillatory solutions of the equation $ x'' + a\left( t \right){\left\vert x \right\vert^\gamma }\operatorname{sgn} x = 0,\gamma > 0$, is discussed under the condition that $ A\left( t \right) = {\text{li}}{{\text{m}}_{T \to \infty }}\int_t^T {a\left( s \right)ds} $ exists and $ A\left( t \right) \geq 0$ for all $ t$. For the sublinear case of $ 0 < \gamma < 1$, the existence of at least one nonoscillatory solution is completely characterized.


References [Enhancements On Off] (What's this?)

  • [1] G. J. Butler, On the oscillatory behaviour of a second order nonlinear differential equation, Ann. Mat. Pura Appl. 105 (1975), 73-92. MR 0425252 (54:13209)
  • [2] -, An integral criterion for the oscillation of a second order sublinear ordinary differential equation, Indian J. Math. 24 (1982), 1-7. MR 724314 (85f:34061)
  • [3] C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation theorems for second order ordinary differential equations, Funkcial. Ekvac. 15 (1972), 119-130. MR 0333337 (48:11662)
  • [4] W. J. Coles, Oscillation criteria for nonlinear second order equations, Ann. Mat. Pura Appl. 82 (1969), 123-133. MR 0255907 (41:567)
  • [5] M. K. Kwong and J. S. W. Wong, An application of integral inequality to second order nonlinear oscillation, J. Differential Equations 46 (1982), 63-77. MR 677584 (84g:34059)
  • [6] M. Naito, Asymptotic behavior of solutions of second order differential equations with integrable coefficients, Trans. Amer. Math. Soc. 282 (1984), 577-588. MR 732107 (85m:34069)
  • [7] C. A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press, New York, 1968. MR 0463570 (57:3515)
  • [8] D. Willett, On the oscillatory behavior of the solutions of second order linear differential equations, Ann. Polon. Math. 21 (1969), 175-194. MR 0249723 (40:2964)
  • [9] J. S. W. Wong, Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc. 144 (1969), 197-215. MR 0251305 (40:4536)
  • [10] -, On the generalized Emden-Fowler equation, SIAM Rev. 17 (1975), 339-360. MR 0367368 (51:3610)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C10, 34C11

Retrieve articles in all journals with MSC: 34C10, 34C11


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1019278-2
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society