A NOTE ON WEINSTEIN’S CONJECTURE

AUGUSTIN BANYAGA

(Communicated by Jonathan M. Rosenberg)

Abstract. We prove that the contact foliation of a compact contact manifold
(M, α) has at least one compact leaf in the following two cases: (i) α is a
K-contact form and M is simply connected, (ii) α is C²-close to a regular
contact form. This solves the Weinstein conjecture in those particular cases.

1. The CONJECTURE

Let S be a hypersurface in a symplectic manifold (M, Ω). There are a Riemannian metric g on M and an almost-complex structure J on M such that
Ω(U, V) = g(U, JV) and g(JU, JV) = g(U, V) for all vector fields U, V.
The characteristic distribution X_S of S is the 1-dimensional distribution on
S defined by X_S(x) = JN_x, where N_x is a unit outward normal vector to S
at x. An integral curve of the distribution X_S is called a characteristic of S.
In a famous paper [6], Rabinowitz proved that if S is a strongly star-shaped
hypersurface of R^{2n}, with its standard symplectic structure ω_0, then S has at
least one closed characteristic. In [8], Weinstein conjectured that if S is simply
connected and carries a contact form α such that i * Ω = dα (he calls such
submanifolds “hypersurfaces of contact type”), then S should have at least one
closed characteristic. Here i: S → M is the inclusion map.

The conjecture has been proved by Viterbo [7] in the particular case M = R^{2n}
with its standard symplectic form, but without the assumption that S is simply
connected. Viterbo’s trick is to change the problem into one of finding periodic
orbits of a Hamiltonian system and use the now-familiar variational method:
closed orbits correspond to critical points of an action-functional on a loop
space.

Let S be a hypersurface of contact type in a symplectic manifold (M, Ω). Then
i * Ω = dα, where i: S → M is the inclusion map. Let X_α be the Reeb
vector field of α: this is the unique vector field on S such that i(X_α)α = 1
and i(X_α)dα = 0; here i(•) is the interior product operation. It is clear that

Received by the editors July 24, 1989 and, in revised form, October 25, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 58F22; Secondary 58F18,
53C15.

Key words and phrases. K-contact form, contact foliation, Riemannian foliation, transverse
symplectic structure, characteristics.
the characteristic field X_S of S spans the kernel of $i \ast \Omega = d\alpha$. Hence, there exists a nowhere-vanishing function f on S such that $X_S(x) = f(x) \cdot X_\alpha(x)$ for all $x \in S$. Therefore, characteristics of S are just reparametrized flow lines of the Reeb field. If (S, α) is a contact manifold, the foliation F of S by integral curves of the Reeb field will be called the "contact foliation" of (S, α).

The Weinstein conjecture can be rephrased as follows: Let (S, α) be a compact, simply connected hypersurface of contact type of a symplectic manifold. Then, its contact foliation has a compact leaf.

We may forget about the embedding $S \hookrightarrow M$ and ask if the contact flow of any compact, simply connected contact manifold has a compact leaf? Posed this way, the problem becomes trivial for some types of contact structure: for instance, if α is a regular contact form.

Recall that a contact form α on S is said to be a regular contact form if each point $x \in S$ has an open neighborhood U such that the integral curves of its Reeb field X_α passing through U pass through that neighborhood only once (see [1, p. 6]). One knows that if α is a regular contact form on a compact manifold S, then there exists a smooth nowhere-vanishing function λ on S such that $X' = \lambda X_\alpha$ generates a free action of the circle S^1 on S (Boothby–Wang's theorem; see [1, p. 14]). Therefore, in that case all the leaves of the contact foliation are compact.

One would like to know what happens if one starts with a regular contact form α and adds to it a small perturbation. Since the set of contact forms is open in the set of all 1-forms, the resulting form α' is a contact form. However, α' is not necessarily a regular contact form. In the next section, we show that the contact foliation of α' has compact leaves. Finally, in §3, we show that the contact foliation F_α of a contact form α on a compact, simply connected manifold M has a compact leaf provided that there exists a Riemannian metric on M which leaves invariant the Reeb field of α. Such contact forms are called K-contact forms [1].

2. A "DEFORMATION" RESULT

Let $\pi: M \to B$ be an oriented S^1-bundle over a compact, oriented even-dimensional manifold B, and let F be an oriented 1-dimensional foliation on M with a transverse symplectic form ω, i.e., $d\omega = 0$ and $\text{Ker } \omega$ generates the tangent space to the leaves of F. That is, for all $x \in M$, $\text{Ker } \omega(x) = \{x \in T_x M \mid \omega(x)(X, \xi) = 0, \forall \xi \in T_x M\}$ is a 1-dimensional vector space isomorphic with the tangent space to the leaf of F through x.

Under the hypothesis that (i) $\omega = \pi^* \omega_0 + d\omega_1$ for some closed 2-form ω_0 on B and (ii) $\text{Ker } \omega$ is C^1-close to the vertical, Ginzburg [2] has proved that the number of compact leaves of F is at least equal to the number k_π of critical points of smooth functions on M such that their critical manifolds are smooth curves whose projections are homologous to zero in B. Clearly $k_\pi \geq 2$.
Consider now a compact manifold M equipped with a regular contact form α_0, and consider a contact form α C^2-close to α_0. By Boothby–Wang's theorem [1], M is the total space of a principal S^1-bundle $\pi: M \to B$, where the action of S^1 on M is generated by a multiple of the Reeb field X_{α_0} of α_0. Hence the vertical direction is spanned by X_{α_0}. The contact foliation F of (M, α) admits $\omega = d\alpha$ as a transverse symplectic structure which satisfies hypothesis (i) in Ginzburg's theorem.

Since α and α_0 are C^2-close, $(d\alpha)^n$ and $(d\alpha_0)^n$ are C^1-close. But the Reeb field X_{β} of any contact form β is uniquely determined by the equation $i(X_{\beta})(\beta \wedge (d\beta)^n) = (d\beta)^n$ when the dimension of the manifold is $2n + 1$. Therefore if α and α_0 are C^2-close, the corresponding Reeb fields are C^1-close. Hence Ginzburg's theorem implies the following result, a form of which was already pointed out by Ginzburg in the case where M is the unit cosphere bundle over a compact, oriented surface:

Theorem 1. Let (M, α) be a compact manifold where the contact form α is C^2-close to some regular contact form on M. Then the contact foliation F_α of (M, α) has at least two compact leaves.

3. K-CONTACT FOLIATIONS

A contact form α on a smooth manifold S is called a K-contact form if there exists a Riemannian metric g on S which is invariant by the Reeb field X_{α} of α, i.e., if $L_{X_{\alpha}}g = 0$, where L is the Lie derivative. The corresponding contact foliation is called a K-contact foliation.

Theorem 2. Let (S, α) be a compact, simply connected manifold with a K-contact form α. The K-contact foliation of (S, α) has at least one compact leaf.

Proof. Let g be a Riemannian metric on S such that $L_{X_{\alpha}}g = 0$, where X_{α} is the Reeb field of α. Monna [5] has shown that the K-contact condition is equivalent to the existence of an invariant transverse metric for the contact foliation F, i.e., that F is a Riemannian foliation with a bundle-like transverse metric in the sense of Rienhart. We refer to the excellent book of Molino [3]. For each vector field V on S, let \overline{V} be the normal field to F such that $\overline{V}(x)$ is the projection on the subspace of T_xS orthogonal to $X_{\alpha}(x)$. Monna [5] defines a transverse metric \overline{g} by the equation

$$\overline{g}(\overline{U}, \overline{V}) = g(-U + \alpha(U) \cdot X_{\alpha}, -V + \alpha(V) \cdot X_{\alpha}).$$

An easy calculation shows that indeed \overline{g} is a transverse metric invariant by X_{α}. In fact, Monna proves that a contact foliation is transversally Riemannian with an invariant bundle-like metric if and only if the contact form is a K-contact form.

Since the kernel of $\omega = d\alpha$ is one-dimensional and spanned by X_{α}, the 2-form $\omega = d\alpha$ is a transverse symplectic structure for the foliation F. We
are now in position to apply the geometric results of Molino on complete Riemannian foliations with transverse symplectic structures: according to Molino [4], if \((S, \alpha)\) is a compact, simply connected \(K\)-contact manifold and \(p\) is the dimension of the structural algebra of the complete Riemannian foliation \(F\) (the \(K\)-contact foliation), there exists a (momentum) map \(I: S \rightarrow \mathbb{R}^p\), constant on the leaves of \(F\), such that \(I(S) \subseteq \mathbb{R}^p\) is a closed convex polytope whose vertices correspond to compact leaves; in this case, these are closed curves. Since the polytope \(I(S)\) necessarily has one or more vertices, the contact foliation has necessarily at least one compact leaf. □

Remarks. There are examples of \(K\)-contact forms which are not regular (see for instance [1, pp. 90–91]). On the other hand, one knows that a regular contact form is a \(K\)-contact form.

Let us finally point out that the contact form \(\alpha\) on the 3-torus \(T^3\) induced by the contact form \(\tilde{\alpha} = \cos(2\pi x_3) \, dx_3 + \sin(2\pi x_3) \, dx_2\) on \(\mathbb{R}^3\) is neither regular nor \(K\)-contact. Indeed there are closed or nonclosed leaves, according to the rationality of \(\tan(2\pi x_3)\). Thus the contact foliation has compact and noncompact leaves; some of the compact leaves are not isolated. Monna pointed out to me that results of Molino prohibit this foliation from being a foliation with a bundle-like metric. Hence the contact form is not a \(K\)-contact form. Obviously it is not a regular contact form either, since the leaves are nonclosed.

ACKNOWLEDGMENTS

I would like to thank Gilbert Monna for his helpful remarks on the first draft of this paper and the referee for suggesting that more information on regular contact forms, be added.

REFERENCES

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802