Hypercompletions of Riesz spaces

Author:
Wolfgang Filter

Journal:
Proc. Amer. Math. Soc. **109** (1990), 775-780

MSC:
Primary 46A40; Secondary 46E27

MathSciNet review:
1021210

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that each Riesz space with separating order continuous dual can be embedded in a unique " -hypercompletion," where is a fixed weak unit of the extended order continuous dual.

**[1]**William D. L. Appling,*Concerning a class of linear transformations*, J. London Math. Soc.**44**(1969), 385–396. MR**0237734****[2]**William D. L. Appling,*An isomorphism and isometry theorem for a class of linear functionals*, Trans. Amer. Math. Soc.**199**(1974), 131–140. MR**0352385**, 10.1090/S0002-9947-1974-0352385-1**[3]**Wayne C. Bell,*A decomposition of additive set functions*, Pacific J. Math.**72**(1977), no. 2, 305–311. MR**0453952****[4]**Wayne C. Bell,*Approximate Hahn decompositions, uniform absolute continuity and uniform integrability*, J. Math. Anal. Appl.**80**(1981), no. 2, 393–405. MR**614839**, 10.1016/0022-247X(81)90113-X**[5]**Wayne C. Bell and Michael Keisler,*A characterization of the representable Lebesgue decomposition projections*, Pacific J. Math.**83**(1979), no. 1, 185–186. MR**555046****[6]**Corneliu Constantinescu,*Duality in measure theory*, Lecture Notes in Mathematics, vol. 796, Springer, Berlin, 1980. MR**574273****[7]**Wolfgang Filter,*Atomical and atomfree elements of a Riesz space*, Arch. Math. (Basel)**52**(1989), no. 6, 580–587. MR**1007633**, 10.1007/BF01237571**[8]**Wolfgang Filter,*Hypercomplete Riesz spaces*, Atti Sem. Mat. Fis. Univ. Modena**38**(1990), no. 1, 227–240. MR**1122681****[9]**Michael Keisler,*Integral representation for elements of the dual of 𝑏𝑎(𝑆,Σ)*, Pacific J. Math.**83**(1979), no. 1, 177–183. MR**555045****[10]**W. A. J. Luxemburg and J. J. Masterson,*An extension of the concept of the order dual of a Riesz space*, Canad. J. Math.**19**(1967), 488–498. MR**0212540****[11]**J. S. MacNerney,*Finitely additive set functions*, Houston J. Math.**suppl.**(1980), iii, 1–125. MR**621386****[12]**R. Daniel Mauldin,*A representation theorem for the second dual of 𝐶[0,1]*, Studia Math.**46**(1973), 197–200. MR**0346506****[13]**R. Daniel Mauldin,*The continuum hypothesis, integration and duals of measure spaces*, Illinois J. Math.**19**(1975), 33–40. MR**0377008****[14]**R. Daniel Mauldin,*Some effects of set-theoretical assumptions in measure theory*, Adv. in Math.**27**(1978), no. 1, 45–62. MR**480385**, 10.1016/0001-8708(78)90076-2**[15]**Y. A. Abramovich,*A special class of vector lattices and its application to hypercomplete spaces*, preprint.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46A40,
46E27

Retrieve articles in all journals with MSC: 46A40, 46E27

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1990-1021210-2

Article copyright:
© Copyright 1990
American Mathematical Society