Hypercompletions of Riesz spaces

Author:
Wolfgang Filter

Journal:
Proc. Amer. Math. Soc. **109** (1990), 775-780

MSC:
Primary 46A40; Secondary 46E27

DOI:
https://doi.org/10.1090/S0002-9939-1990-1021210-2

MathSciNet review:
1021210

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that each Riesz space with separating order continuous dual can be embedded in a unique " -hypercompletion," where is a fixed weak unit of the extended order continuous dual.

**[1]**W. D. L. Appling,*Concerning a class of linear transformations*, J. London Math. Soc.**44**(1969), 385-396. MR**0237734 (38:6015)****[2]**-,*An isomorphism and isometry theorem for a class of linear functional*, Trans. Amer. Math. Soc.**199**(1974), 131-140. MR**0352385 (50:4872)****[3]**W. C. Bell,*A decomposition of additive set functions*, Pacific J. Math.**72**(1977), 305-311. MR**0453952 (56:12205)****[4]**-,*Approximate Hahn decompositions, uniform absolute continuity and uniform integrability*, J. Math. Anal. Appl.**80**(1981), 393-405. MR**614839 (82g:28003)****[5]**W. C. Bell and M. Keisler,*A characterization of the representable Lebesgue decomposition properties*, Pacific J. Math.**83**(1979), 185-186. MR**555046 (81g:46036)****[6]**C. Constantinescu,*Duality in measure theory*, Lecture Notes in Math., vol. 796, Springer-Verlag, Berlin, Heidelberg, and New York, 1980. MR**574273 (81i:28001)****[7]**W. Filter,*Atomical and atomfree elements of a Riesz space*, Arch. Math.**52**(1989), 580-587. MR**1007633 (90g:46012)****[8]**-,*Hypercomplete Riesz spaces*, Atti Sem. Mat. Fis. Univ. Modena (to appear). MR**1122681 (92g:46006)****[9]**M. Keisler,*Integral representation for elements of the dual of*, Pacific J. Math.**83**(1979), 177-183. MR**555045 (81g:46035)****[10]**W. A. J. Luxemburg and J. J. Masterson,*An extension of the concept of the order dual of a Riesz space*, Canad. J. Math.**19**(1967), 488-498. MR**0212540 (35:3411)****[11]**J. S. MacNerney,*Finitely additive set functions*, Houston J. Math.**6**(1980). MR**621386 (83c:46001)****[12]**R. D. Mauldin,*A representation theorem for the second dual of*, Studia Math.**46**(1973), 197-200. MR**0346506 (49:11231)****[13]**-,*The continuum hypothesis, integration and duals of measure spaces*, Illinois J. Math.**19**(1975), 33-40. MR**0377008 (51:13183)****[14]**-,*Some effects of set-theoretical assumptions in measure theory*, Adv. in Math.**27**(1978), 45-62. MR**480385 (80i:28021)****[15]**Y. A. Abramovich,*A special class of vector lattices and its application to hypercomplete spaces*, preprint.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46A40,
46E27

Retrieve articles in all journals with MSC: 46A40, 46E27

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1021210-2

Article copyright:
© Copyright 1990
American Mathematical Society