UNIVERSAL MAPS AND SURJECTIVE CHARACTERIZATIONS
OF COMPLETELY METRIZABLE LC^n-SPACES

A. CHIGOGIDZE AND V. VALOV

(Communicated by James E. West)

Abstract. We construct an n-dimensional completely metrizable $AE(n)$-space $P(n, \tau)$ of weight $\tau \geq \omega$ with the following property: for any at most n-dimensional completely metrizable space Y of weight $\leq \tau$ the set of closed embeddings $Y \rightarrow P(n, \tau)$ is dense in the space $C(Y, P(n, \tau))$. It is also shown that completely metrizable LC^n-spaces of weight $\tau \geq \omega$ are precisely the n-invertible images of the Hilbert space $\ell_2(\tau)$.

Introduction

Let \mathcal{Y} be a class of completely metrizable spaces. A space $X \in \mathcal{Y}$ is said to be strongly \mathcal{Y}-universal if for any space $Y \in \mathcal{Y}$ the set of closed embeddings $Y \rightarrow X$ is dense in the space $C(Y, X)$ of all continuous maps from Y to X endowed with the limitation topology (a stronger version of this notion under the same name was introduced in [BM]). This property is very important in the theory of manifolds modelled on certain model spaces. Let us recall the corresponding results:

(i) If \mathcal{R} is the class of all metrizable compacta, then X is homeomorphic to the Hilbert cube Q iff X is a strongly \mathcal{R}-universal AE-compactum $[T_1]$;

(ii) if \mathcal{R}_n is the class of all at most n-dimensional metrizable compacta, then X is homeomorphic to Menger's universal n-dimensional compactum M_n^{2n+1} [E] iff X is a strongly \mathcal{R}_n-universal $AE(n)$-compactum (for $n = 0$, [Br]; for $n \geq 1$, [B]);

(iii) if \mathcal{M}_{τ} is the class of all completely metrizable spaces of weight $\leq \tau$, $\tau \geq \omega$, then X is homeomorphic to the Hilbert space $\ell_2(\tau)$ iff X is a strongly \mathcal{M}_τ-universal AE-space $[T_2]$.

(iv) if $\mathcal{M}_{0, \tau}$ is the class of all zero-dimensional completely metrizable spaces of weight $\leq \tau$, $\tau \geq \omega$, then X is homeomorphic to the Baire space $B(\tau)$ iff X is strongly $\mathcal{M}_{0, \tau}$-universal (for $\tau = \omega$ [AU]; for $\tau > \omega$, $\mathcal{M}_{0, \tau}$-universal).

Received by the editors August 31, 1987 and, in revised form, June 8, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 54C55, 54E50, 54F35.

Key words and phrases. Strongly (n, τ)-universal map, n-soft map, $AE(n, m)$-space.

The second author was partially supported by the Bulgarian Ministry of Culture, Science and Education, Contract N 45.

©1990 American Mathematical Society

0002-9939/90 $1.00 + .25$ per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The main purpose of this paper is to show the existence of a strongly $\mathcal{M}_{n, \tau}$-universal $AE(n)$-space, where $\mathcal{M}_{n, \tau}$ is the class of all at most n-dimensional completely metrizable spaces of weight $\leq \tau$, $\tau \geq \omega$. Let us note that strongly $\mathcal{M}_{n, \omega}$-universal $AE(n)$-spaces were constructed by the first author in [C3]. There are many reasons to hope that the following problems have affirmative solutions:

Problem. Are any two strongly $\mathcal{M}_{n, \tau}$-universal $AE(n)$-spaces homeomorphic? In particular, is any strongly $\mathcal{M}_{n, \omega}$-universal $AE(n)$-space homeomorphic to Nobeling's universal n-dimensional space N_{n}^{2n+1}?

The second part of this paper is devoted to surjective characterizations of completely metrizable LC^n-spaces. Similar characterizations in the class of metrizable compacta were earlier obtained by Hoffman [H2] and Dranishnikov [D] (see also [C4], where the class of Polish spaces is considered).

1. Preliminaries

All spaces considered are metrizable and maps continuous. By dimension \dim we mean covering dimension. A metrizable space X is an absolute (neighborhood) extensor in dimension n (briefly, $X \in A(N)E(n)$) if for any at most n-dimensional metrizable space Y and any closed subspace A of it each map $f: A \to X$ can be extended to the whole of Y (respectively, to a neighborhood of A in Y). It is well known that for $n > 0$, $X \in A(N)E(n)$ iff $X \in LC^{n-1} \cap C^{n-1}$ (respectively, $X \in LC^{n-1}$). Note also that any metrizable space, and hence any completely metrizable space, is an $AE(0)$. (The argument can be made as follows: Let $\dim Y = 0$ and $A \subset Y$ be closed. Let X be metrizable and $f: A \to X$ be a map. It is well known that there is a retraction $r: Y \to A$. Then $f \circ r$ is the desired extension of f.) The notion of n-soft map between compacta was introduced by Schepin [S]. Later Chigogidze [C1] extended it to the class of all Tychonov spaces. Below we use the following definition of this notion: a map $f: X \to Y$ between metrizable spaces is called n-soft if for any at most n-dimensional paracompact space Z, any closed subspace A of it and any two maps $g: Z \to Y$, $h: A \to X$ with $f \circ h = g|A$, there exists a map $k: Z \to X$ such that $f \circ k = g$ and $k|A = h$.

2. Universal maps

Lemma 2.1. Let $f: X \to Y$ be an n-soft map between metrizable spaces. Suppose $\dim X \leq n$ and Y is a complete absolute extensor for the class of all metrizable spaces. Then X is complete.

Proof. Consider the Stone–Čech compactification βX of X. Denote by Z the space obtained from βX by means of making the points of $\beta X - X$ isolated. This space is shown to be paracompact in the proof of [P, Lemma 2].

Claim. $\dim Z \leq n$. Since Z is normal it suffices to extend to Z an arbitrary map $g: F \to S^n$ from a closed subset F of Z into the n-dimensional sphere.
The case \(F \subseteq Z - X \) is trivial. Suppose now that \(F \cap X \neq \emptyset \). Since \(\dim X \leq n \), there exists an extension \(g_1 : F \cup X \to S^n \) of \(g \). Observe that \(F \cup X \) is closed in \(Z \). Hence we can extend \(g_1 \) to a map \(g_2 \) from \(Z \) into the \((n+1) \)-dimensional disk \(B^{n+1} \). Put \(H = g_2^{-1}(B^{n+1} - \{b\}) \), where \(b \in B^{n+1} - S^n \). Fix a retraction \(r : (B^{n+1} - \{b\}) \to S^n \). Clearly, \(H \) is clopen in \(Z \); so there exists a map \(g_3 : Z \to S^n \) extending the composition \(r \circ g_2 : H \to S^n \). Obviously, \(g_3|F = g \).

The claim is proved.

Since \(Y \) is metrizable and is an AE for metrizable spaces, then \(Y \) is an absolute retract for metrizable spaces. Further, complete metrizable implies Čech complete. Being metrizable, \(Y \) is a paracompact \(p \)-space, so using [P, Fact 6 and Corollary 1(b)], we conclude that \(Y \) is an absolute extensor for the class of collectionwise normal spaces. Take a map \(h : Z \to Y \) such that \(h|X = f \). It follows by the \(n \)-softness of \(f \) that there exists a retraction from \(Z \) onto \(X \). Now, by arguments of Przymusinski ([P, the proof of Lemma 2]), \(X \) is complete.

Lemma 2.2 (for \(\tau = \omega \), [C2]). Let \(0 \leq n < \omega \leq \tau \). Then there exist an \(n \)-dimensional completely metrizable space \(X \) of weight \(\tau \) and an \(n \)-soft map \(f : X \to \ell_2(\tau) \).

Proof. By [C2, Theorem 5], we can suppose that \(\tau > \omega \). Let \(d_1 \) be any metric on \(\ell_2(\tau) \). Fix a completely zero-dimensional (with respect to \(d_1 \)) surjection \(g : \ell_2(\tau) \to Y \), where \(Y \) is a separable metrizable space [AP]. By an application of [C2, Theorem 5.1] (see also the remarks following it) there exist an at most \(n \)-dimensional separable space \(Z \) and an \(n \)-soft map \(h : Z \to Y \). Let \(X \) be a fibered product (pullback) of the spaces \(\ell_2(\tau) \) and \(Z \) with respect to the maps \(g \) and \(h \). Denote by \(f : X \to \ell_2(\tau) \) and \(p : X \to Z \) the corresponding canonical projections. Let \(d_2 \) be any metric on \(Z \). Clearly, the map \(p \) is completely zero-dimensional with respect to the metric \(d = (d_1^2 + d_2^2)^{1/2} \) [AP, Chapter 6, §3, Lemma 4]. Hence \(\dim X \leq \dim Z \leq n \). It is easy to see that \(\omega(X) = \tau \). Observe also that the \(n \)-softness of \(h \) implies the \(n \)-softness of \(f \). Since \(\ell_2(\tau) \) contains a copy of the \(n \)-dimensional cube \(I^n \) and \(f \) is an \(n \)-soft map, the space \(X \) contains a copy of \(I^n \) too. Thus \(\dim X = n \). By Lemma 2.1, \(X \) is completely metrizable.

Corollary 2.3 (for \(\tau = \omega \), [C3]). Let \(0 \leq n < \omega \leq \tau \). Then for every (completely) metrizable space \(Y \) of weight \(\tau \) there exist an at most \(n \)-dimensional (completely) metrizable space \(Z \) of weight \(\tau \) and an \(n \)-soft map \(g : Z \to Y \).

Proof. Embed \(Y \) into \(\ell_2(\tau) \) as a (closed) subspace and consider the map \(f : X \to \ell_2(\tau) \) from Lemma 2.2. Put \(Z = f^{-1}(Y) \) and \(g = f|Z \).

Definition 2.4 (for \(\tau = \omega \), [C3]). Let \(0 \leq n < \omega \leq \tau \). A map \(f : X \to Y \) is said to be \((n, \tau) \)-full if for any map \(g : Z \to Y \) from any at most \(n \)-dimensional completely metrizable space \(Z \) of weight \(\leq \tau \) there exists a closed embedding \(h : Z \to X \) such that \(f \circ h = g \).
Definition 2.5 (for $\tau = \omega$, [C$_3$]). Let $0 < n < \omega \leq \tau$. A map $f: X \to Y$ is called strongly (n, τ)-universal if for any open cover \mathcal{U} of X, any at most n-dimensional completely metrizable space Z of weight $\leq \tau$ and any map $g: Z \to X$ there exists a closed embedding $h: Z \to X$ \mathcal{U}-close to g with $f \circ h = f \circ g$. We shall also say that a space X is strongly (n, τ)-universal if the constant map $X \to *$ is strongly (n, τ)-universal in the above sense.

Lemma 2.6 (for $\tau = \omega$, [C$_3$]). Let $0 < n < \omega \leq \tau$ and $S = \{X_k, p^{k+1}_k, \omega\}$ be an inverse sequence consisting of completely metrizable spaces X_k of weight $\leq \tau$ and n-soft, (n, τ)-full projections p^{k+1}_k. Then the limit projection $p_0: X \to X_0$, where $X = \lim S$, is strongly (n, τ)-universal.

Proof. Equip X with the metric $d\{x_k, y_k\} = \max_k d_k(x_k, y_k)$, where d_k is a metric for X_k with $d_k \leq 2^{-k}$, $k \in \omega$. If suffices to show that, given a completely metrizable space Y with $\dim Y \leq n$ and $\omega(Y) \leq \tau$ and maps $f: Y \to X$, $\alpha: X \to (0, 1)$, there is a closed embedding $g: Y \to X$ with $p_0 \circ g = p_0 \circ f$ and $d(f(y), g(y)) \leq \alpha(f(y))$ for each $y \in Y$.

For each $k \in \omega$ fix a closed embedding $i_{k+1}: X_{k+1} \to \ell_2(\tau)$. Since $\ell_2(\tau) \in AE$ there is a map $h: (\ell_2(\tau))^2 \times [0, \infty) \to \ell_2(\tau)$ such that $h(a, b, t) = a$ for $t \leq 1$ and $h(a, b, t) = b$ for $t \geq 2$. By Corollary 2.3, for each $k \in \omega$ there is an n-soft map $q_{k+1}: Z_{k+1} \to X_k \times \ell_2(\tau)$, where Z_{k+1} is a completely metrizable space with $\dim Z_{k+1} \leq n$ and $\omega(Z_{k+1}) = \tau$. The n-softness of the projection p^{k+1}_k implies the existence of a $r_{k+1}: Z_{k+1} \to X_k$ with $p^{k+1}_k \circ r_{k+1} = \pi_k \circ q_{k+1}$ and $r_{k+1}(A_{k+1}) = (p^{k+1}_k \Delta i_{k+1})^{-1} \circ q_{k+1}(A_{k+1})$, where

$$A_{k+1} = q_{k+1}^{-1}((p^{k+1}_k \Delta i_{k+1})(X_k))$$

and

$$\pi_k: X_k \times \ell_2(\tau) \to X_k$$

denotes the natural projection. Put $g_0 = p_0 \circ f$. By our assumption, the projection p_0^1 of the spectrum S is (n, τ)-full. Hence there exists a closed embedding $j_1: Y \to X_1$ such that $p_0^1 \circ j_1 = g_0$. Consider now the map

$$g_0 \Delta h(i_1 \circ p_1 \circ f \Delta i_1 \circ j_1 \Delta 2\alpha \circ f): Y \to X_0 \times \ell_2(\tau).$$

Since $\dim Y \leq n$ and the map q_1 is n-soft there is a map $s_1: Y \to Z_1$ such that $g_0 \Delta h(i_1 \circ p_1 \circ f \Delta i_1 \circ j_1 \Delta 2\alpha \circ f) = q_1 \circ s_1$. We define a map $g_1: Y \to X_1$ by the formula $g_1 = r_1 \circ s_1$. Note that $p_0^1 \circ g_1 = g_0$. If $y \in Y$ and $\alpha(f(y)) \leq 2^{-1}$, then $g_1(y) = p_1(f(y))$. (Use the fact that $g_1(y) = r_1(s_1(y))$, show that $s_1(y) \in A_1$, and then use the above formula for $q_1 \circ s_1$.)

Let us construct a map $g_2: Y \to X_2$. By our assumption, the projection p_1^2 is (n, τ)-full. Hence there is a closed embedding $j_2: Y \to X_2$ such that $p_1^2 \circ j_2 = g_1$. Since $\dim Y \leq n$ and the map q_2 is n-soft there is a map $s_2: Y \to Z_2$ such that $q_2 \circ s_2 = g_1 \Delta h(i_2 \circ p_2 \circ f \Delta i_2 \circ j_2 \Delta 2\alpha \circ f)$. Put $g_2 = r_2 \circ s_2$. As above, $p_2^2 \circ g_2 = g_1$. Note that if $y \in Y$ and $\alpha(f(y)) \leq 2^{-2}$, then $g_2(y) = p_2(f(y))$; if $\alpha(f(y)) \geq 2^{-1}$, then $g_2(y) = j_2(y)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let us suppose that for each i, $2 \leq i \leq k$, we have already constructed maps $g_i : Y \to X_i$ and closed embeddings $j_i : Y \to X_i$ satisfying the following conditions:

1. $p_i^{i-1} \circ g_i = g_{i-1}$;
2. $p_i^{i-1} \circ j_i = g_{i-1}$;
3. If $y \in Y$ and $\alpha(f(y)) \leq 2^{-i}$, then $g_i(y) = p_i(f(y))$;
4. If $y \in Y$ and $\alpha(f(y)) \leq 2^{-i+1}$, then $g_i(y) = j_i(y)$.

Let us construct a map $g_{k+1} : Y \to X_{k+1}$ and a closed embedding $j_{k+1} : Y \to X_{k+1}$ with the desired properties. Choose an arbitrary closed embedding $j_{k+1} : Y \to X_{k+1}$ with $p_{k+1} \circ j_{k+1} = g_k$ (the existence of j_{k+1} follows from the (n, τ)-fullness of p_{k+1}). As above there is a map $s_{k+1} : Y \to Z_{k+1}$ such that $q_{k+1} \circ s_{k+1} = g_k \Delta h(i_{k+1}) \circ p_{k+1} \circ f \Delta i_{k+1} \circ j_{k+1} \Delta 2^{k+1} \alpha \circ f)$. We put $g_{k+1} = r_{k+1} \circ s_{k+1}$. The verification of the conditions $(1)_{k+1} - (4)_{k+1}$ is left to the reader.

It follows from the conditions $(1)_k$, $k \in \omega$, that the diagonal product $g = \Delta g_k : k \in \omega$ maps Y into X and satisfies the following equalities: $p_k \circ g = g_k$, $k \in \omega$. In particular, we have $p_0 \circ g = g_0 = p_0 \circ f$.

Let $y \in Y$. If $\alpha(f(y)) \in [2^{-k-1}, 2^{-k}]$, then $2^i \alpha(f(y)) \leq 1$ for $i \leq k$; hence

$$p_i(f(y)) = g_i(y) \quad \text{for } i \leq k$$

and

$$d(f(y)g(y)) = \max\{d_i(p_i(f(y)), g_i(y)) : i = k + 1, k + 2, \ldots\} \leq 2^{-k-1} \leq \alpha(f(y)).$$

In order to show that g is a closed embedding it suffices to use the corresponding arguments from the proof of [C2, Lemma 7.11].

Theorem 2.7 (for $\tau = \omega$, [C3]). Let $0 \leq n < \omega \leq \tau$. Then there exist an n-dimensional completely metrizable space $P(n, \tau)$ of weight τ and a strongly (n, τ)-universal n-soft map $f(n, \tau) : P(n, \tau) \to \ell_2(\tau)$.

Proof. Put $X_0 = l_2(\tau)$. By Corollary 2.3, there exists at most an n-dimensional completely metrizable space X_{k+1} of weight τ and an n-soft map $h_{k+1} : X_k \to X_k \times \ell_2(\tau)$. Put $p_{k+1} = \pi_k \circ h_{k+1}$, where $\pi_k : X_k \times \ell_2(\tau) \to X_k$ is the natural projection, $k \in \omega$. So we get an inverse sequence $S = \{X_k, p_{k+1}\}$ consisting of at most n-dimensional completely metrizable spaces of weight τ and (n, τ)-full n-soft projections. Put $P(n, \tau) = \lim S$ and $f(n, \tau) = p_0$. By Lemma 2.6, the map $f(n, \tau)$ is strongly (n, τ)-universal. Obviously, this map is n-soft. Since $\dim X_k \leq n$ for each $k \geq 1$, we have $\dim P(n, \tau) \leq n$ [N]. The inverse inequality $\dim P(n, \tau) \geq n$ follows from the strong (n, τ)-universality of $f(n, \tau)$. Finally observe that $P(n, \tau)$ is a complete metrizable space of weight τ. This completes the proof.
Corollary 2.8 (for \(\tau = \omega \), \([C_3]\)). Let \(0 \leq n < \omega \leq \tau \). The space \(P(n, \tau) \) is an \(n \)-dimensional strongly \((n, \tau)\)-universal completely metrizable \(AE(n) \)-space of weight \(\tau \).

Proof. \(P(n, \tau) \) is an \(AE(n) \)-space as an \(n \)-soft preimage of \(\ell_2(\tau) \).

Remark 2.9. The space \(P(n, \tau) \) has the following property: for every open subspace \(U \) of \(P(n, \tau) \) and any at most \(n \)-dimensional completely metrizable space \(X \) of weight \(\leq \tau \) there exists an embedding \(h: X \to U \) such that \(h(X) \) is closed in \(P(n, \tau) \). Indeed, consider a constant map \(g: X \to \{ p \} \), where \(p \) is an arbitrary point of \(U \), and the open cover \(\mathcal{U} = \{ U, P(n, \tau) - \{ p \} \} \) of \(P(n, \tau) \). By Definition 2.5, there is a closed embedding \(h: X \to P(n, \tau) \) \(\mathcal{U} \)-close to \(g \). Clearly, \(h(X) \subseteq U \). In particular, we have \(\omega(U) = \tau \) for every open subset \(U \) of \(P(n, \tau) \). Hence, \(P(0, \tau) \) is homeomorphic to the Baire space \(B(\tau) \) (see [St]).

Remark 2.10. A. Wasko proved, in [W], that for every \(n \geq 0 \) and every \(\tau \geq \omega \) there exists an \(n \)-dimensional completely metrizable space \(X_{n, \tau} \) of weight \(\tau \) such that every at most \(n \)-dimensional completely metrizable space of weight \(\leq \tau \) is embedded in \(X_{n, \tau} \) as a closed subset (for \(\tau = \omega \) this was proved earlier by the first author, see [C1, Corollary 3]). Recently E. Pol, [Po], strengthened this result of A. Wasko by proving that for every \(n \)-dimensional completely metrizable space \(X \) of weight \(\leq \tau \) the set of all embeddings of \(X \) onto a closed subset of \(S(\tau)^\omega \) contained in \(K_n(\tau) \) is residual in the space \(C(X, S(\tau)^\omega) \). Here \(S(\tau) \) is the \(\tau \)-star-space and \(K_n(\tau) \) denotes Nagata's universal \(n \)-dimensional space.

3. Surjective characterizations of \(LC^n \)-spaces

Definition 3.1 [H2]. A space \(X \) is said to be in the class \(AE(n, m) \), where \(0 \leq n \leq m \leq \infty \), if for any metrizable space \(Z \) with \(\dim Z \leq m \), any closed subspace \(A \) of it with \(\dim A \leq n \), any map \(f: A \to X \) can be extended to the whole of \(Z \). If \(f \) can be extended only to a neighborhood of \(A \) in \(Z \), we get a definition of the class \(ANE(n, m) \).

Lemma 3.2. For every \(n \in \omega \) the following equalities are true in the class of all metrizable spaces: \(A(N)E(n + 1) = A(N)E(n, n + 1) \).

In the class of all metrizable compacta this lemma was proved by Dranishnikov (see [D, Lemma 3.1]). The same proof remains valid in the general case.

Lemma 3.3. If \(0 \leq n < m \leq \infty \), then the following equalities are true in the class of all metrizable spaces: \(A(N)E(n + 1) = A(N)E(n, m) \).

Proof. Since \(n + 1 \leq m \), then \(A(N)E(n, m) \subseteq A(N)E(n, n + 1) \); thus, \(A(N)E(n, m) \subseteq A(N)E(n + 1) \) follows from Lemma 3.2. Suppose \(X \) is a metrizable \(AE(n + 1) \)-space. Let \(Z \) be a metrizable space with \(\dim Z \leq m \), \(A \) a closed subspace of \(Z \) with \(\dim A \leq n \) and \(f \) a map from \(A \) to \(X \). Take a metrizable \(AE \)-space, say \(Y \), of dimension \(\leq n + 1 \) containing \(A \) as a closed
subspace ([K], see also [C,] for Polish spaces and [Ts] for completely metrizable spaces). Now choose a map \(k : Y \to X \) such that \(k|A = f \). This is possible because, by Lemma 3.2, \(X \in AE(n, n + 1) \). Since \(Y \in AE \), there exists a map \(g : Z \to Y \) such that \(g|A = id \). Then \(k \circ g \) is an extension of \(f \). The inclusion \(ANE(n + 1) \subset ANE(n, m) \) follows from the same arguments.

Definition 3.4 [H,]. A map \(f : X \to Y \) is called \(n \)-invertible if for any at most \(n \)-dimensional metrizable space \(Z \) and any map \(g : Z \to Y \) there exists a map \(h : Z \to X \) such that \(g = f \circ h \).

Obviously, every \(n \)-invertible map is a surjection. For a metrizable compactum \(X \) it is known \([D], [H,]\) that \(X \) is an \(AE(n+1) \) iff \(X \) is an \(n \)-invertible image of \(Q \). It is also true \([D]\) that the class of all metrizable \(AE(n) \)-compacta coincides with the class of \(n \)-invertible images of the \(n \)-dimensional universal Menger compactum \(m_n^{2n+1} \). The first author \([C,]\) gave similar characterizations of \(AE(n+1) \) and \(AE(n) \) in the class of Polish spaces. In the case of metrizable spaces of uncountable weight we know only the following facts: (i) the classical characterization of completely metrizable spaces of weight \(\tau \) as open images of the Baire space \(B(\tau) \); (ii) a metrizable space \(X \) of weight \(\tau \) is \(\check{C}ech \)-complete iff \(X \) is a 0-invertible image of \(B(\tau) \) \([V]\).

Below we give similar characterizations of metrizable \(AE(n) \)-spaces of arbitrary weight.

Definition 3.5 \([C,]\). A map \(f : X \to Y \) is said to be inductively \(n \)-soft if there exists a closed subspace \(Z \) of \(X \) such that the restriction \(f|Z : Z \to Y \) is \(n \)-soft.

Theorem 3.6. Let \(X \) be a metrizable space of weight \(\tau \geq \omega \). Then for every \(n \in \omega \) the following conditions are equivalent:

(i) \(X \in AE(n + 1) \) (respectively, \(X \in ANE(n + 1) \));

(ii) \(X \) is an inductively \(n \)-soft image of an \(AE \) (respectively, of an \(ANE \));

(iii) \(X \) is an \(n \)-invertible image of an \(AE \) (respectively, of an \(ANE \));

Proof. We shall prove only the global variant. The local one follows from the same arguments.

(i) \(\to \) (ii). By Corollary 2.3, there exist an at most \(n \)-dimensional metrizable space \(Y \) of weight \(\tau \) and an \(n \)-soft map \(g : Y \to X \). Embed \(Y \) into a metrizable \(AE \)-space \(Z \) as a closed subspace. By Lemma 3.3, there exists an extension \(h : Z \to X \) of \(g \). Clearly, \(h \) is inductively \(n \)-soft.

(ii) \(\to \) (iii). This implication is trivial, because any \(n \)-soft map is \(n \)-invertible.

(iii) \(\to \) (i). Let \(Z \) be an \(AE \)-space and \(f : Z \to X \) be an \(n \)-invertible map. In view of Lemma 3.2 it suffices to show that \(X \in AE(n, n + 1) \). Let \(B \) be any at most \((n + 1) \)-dimensional metrizable space, \(A \) a closed subspace of \(B \) with \(\dim A \leq n \) and \(g \) a map from \(A \) to \(X \). Since \(f \) is \(n \)-invertible, there exists a map \(h : A \to Z \) such that \(f \circ h = g \). Take any extension \(k : B \to Z \) of \(h \). Then the map \(f \circ k \) is an extension of \(g \).
Let us consider the proof of Theorem 3.6. If X is a complete metrizable space of weight τ, then the space Y is also complete, so we can suppose that Z is the space $\ell_2(\tau)$. Thus, the following theorem is true.

Theorem 3.7. Let X be a completely metrizable space of weight $\tau \geq \omega$. Then for every $n \in \omega$ the following conditions are equivalent:

(i) $X \in \text{AE}(n+1)$ (respectively, $X \in \text{ANE}(n+1)$);
(ii) X is an inductively n-soft image of $\ell_2(\tau)$ (respectively, of an open subspace of $\ell_2(\tau)$);
(iii) X is an n-invertible image of $\ell_2(\tau)$ (respectively, of an open subset of $\ell_2(\tau)$).

The proof of the following result is analogous to the proof of Theorem 3.6.

Theorem 3.8. Let X be a completely metrizable space of weight $\tau \geq \omega$. Then for every $n \in \omega$ the following conditions are equivalent:

(i) $X \in \text{AE}(n)$ (respectively, $X \in \text{ANE}(n)$);
(ii) X is an inductively n-soft image of $P(n, \tau)$ (respectively, of an open subset of $P(n, \tau)$);
(iii) X is an n-invertible image of $P(n, \tau)$ (respectively, of an open subset of $P(n, \tau)$).

ACKNOWLEDGMENTS

The authors express their sincere appreciation to the referee and to W. Olczewski for many helpful suggestions.

REFERENCES

Department of Mathematics, Moskow State University, Moskow 119899, USSR

Department of Mathematics, Sofia State University, Sofia 1126, Bulgaria