CONVEX FUNCTIONS WITH RESTRICTED CURVATURE

D. STYER AND D. J. WRIGHT

(Communicated by Clifford J. Earle, Jr.)

ABSTRACT. Given $0 < R_1 \leq R_2 \leq \infty$, we consider a class of normalized convex functions f in the unit disk D, for which $\partial f(D)$ satisfies a Blaschke Rolling Theorem condition with radii R_1 and R_2. This class contains the convex functions of bounded type. We study the geometry of the image region $f(D)$ and various covering and distortion properties.

1. Introduction

Let $B(a, \delta)$ be the open disk of radius δ centered at a, and let $D = B(0, 1)$. As usual, S denotes the class of normalized univalent functions in D, and we denote by CV the subclass of S consisting of convex functions. Assume $f \in CV$. For fixed $r \in (0, 1)$ the curve $C_r: w = f(re^{it}), 0 \leq t \leq 2\pi$, has radius of curvature at $f(z)$ given by

$$\rho(z) = \frac{|zf'(z)|}{\Re(1 + zf''(z)/f'(z))}.$$

When clarity requires reference to the function f we will write $\rho(f; z)$, and we adopt a similar convention when it is needed in notations which arise later. Let $\rho_M(r)$ and $\rho_m(r)$ denote the maximum and minimum, respectively, of $\rho(z)$ on $|z| = r$. Setting $n(z) = zf'(z)/|zf'(z)|$ (the unit exterior normal to C_r at $f(z)$), Blaschke’s Rolling Theorem (e.g., see [3]) implies that

$$B(f(z) - \rho_m(r)n(z), \rho_M(r)) \subseteq f(B(0, r)) \subseteq B(f(z) - \rho_M(r)n(z), \rho_M(r))$$

for each z with $|z| = r$.

Walsh [8] showed that either $\rho_M(r)/r$ is strictly increasing on $(0, 1)$ or $f(z) = z$. He also observed that $\rho_m(r)$ need not be monotone. Let

$$R_2(f) = \lim_{r \to 1} \rho_M(r)$$

and

$$R_1(f) = \lim_{r \to 1} \rho_m(r).$$

Since $\rho(z)/|z| \to |f'(0)| = 1$ as $z \to 0$, we see from Walsh’s result that $1 \leq \rho_M(r)/r \leq R_2(f)$, with equality if and only if $f(z) = z$. For $0 \leq R_1 \leq R_2 \leq \infty$
and $r_2 \geq 1$ let $CV(R_1, R_2) = \{ f \in CV : R_1 \leq R_1(f) \leq R_2(f) \leq R_2 \}$. These functions were studied by Goodman [1, 2], who called them convex functions of bounded type. Distortion and coefficient results for this class have been obtained by Wirths [9] and Mejia and Minda [4].

In this paper we consider a closely related class of functions whose definition is motivated by the Blaschke Rolling Theorem. Given $0 \leq R_1 \leq R_2 \leq \infty$ and $R_2 \geq 1$, let $CVG(R_1, R_2)$ be the class of functions f in S with the property that for each $\eta \in \partial f(D)$ there are open disks $D_1(\eta)$ and $D_2(\eta)$ of radius R_1 and R_2, respectively, such that $\eta \in \partial D_1(\eta) \cap \partial D_2(\eta)$ and

$$D_1(\eta) \subseteq f(D) \subseteq D_2(\eta).$$

If $R_1 = 0$ or $R_2 = \infty$ we interpret $D_1(\eta)$ or $D_2(\eta)$ to be the empty set or an open half-plane, respectively.

If f is a bounded function in $CVG(R_1, R_2)$ and $R_1 > 0$, then $\partial f(D)$ is smooth in the sense that it has a continuously turning tangent. Yet we shall see that $\partial f(D)$ need not be a curve of class C^2 and $\rho(z)$ may not be continuous on \overline{D}. In §2 we show that $CV(R_1, R_2) \subseteq CVG(R_1, R_2)$. Next, §3 concerns characterizations of $CVG(R_1, R_2)$ in terms of the geometry of the regions $f(D)$. In §4 we obtain some partial results on the relationship between the largest disk centered at zero which is covered by $f(D)$ and the $\sup\{|f(z)| : z \in D\}$ when $f \in CVG(R_1, R_2)$. Finally, we study the order of growth of $|f'|$ and discuss some open questions.

2. Preliminaries

Each f in CV has a spherically continuous extension to \overline{D}. Moreover, there are at most two points on ∂D at which f takes the value infinity, and except for this occurrence, $f(\partial D)$ is a simple closed curve in the extended complex plane. Since zf' is starlike, $\arg zf'(z)$ has a radial limit everywhere [6]. Thus, though $f(\partial D)$ may not be smooth, $n(\zeta)$ does exist as a radial limit for all $\zeta \in \partial D$. Let

$$\Phi(t) = \lim_{r \to 1} \arg n(re^{it}).$$

Since Φ is increasing [6], it has at most a countable number of discontinuities, each of which is a simple jump. Moreover, if Φ has a jump at t of magnitude $-\pi$, $\alpha > 0$, and $f(e^{it})$ is finite, then $\alpha < 1$, and we shall say that $\partial f(D)$ has a corner at $f(e^{it})$ with interior angle $(1-\alpha)\pi$.

Lemma 1. If $f \in CV$ and $\partial f(D)$ has a corner at $f(e^{it_0})$, then $\rho(re^{it_0}) \to 0$ as $r \to 1$.

Proof. Assume $f \in CV$. Pommerenke [6, Lemma 1] showed that

$$zf'(z) = z \exp \left\{ (-1/\pi) \int_0^{2\pi} \log(1 - ze^{-it}) d\Phi(t) \right\},$$
so
\[\rho(z) = |zf'(z)|/\left(1/2\pi\right) \int_0^{2\pi} \text{Re}\{(1 + ze^{-it})/(1 - ze^{-it})\} \, d\Phi(t). \]

Suppose \(\Phi \) has a jump of magnitude \(\alpha\pi \) at \(t_0 \). If \(\delta \in (0, \pi) \), then
\[\left(1/2\pi\right) \int_0^{2\pi} \text{Re}\{(1 + re^{i(t_0-t)})/(1 - re^{i(t_0-t)})\} \, d\Phi(t) \]
\[\geq (1/2\pi) \int_{t_0-\delta}^{t_0+\delta} \text{Re}\{(1 + re^{i(t_0-t)})/(1 - re^{i(t_0-t)})\} \, d\Phi(t), \]
and the quantity on the right decreases to \(\alpha(1 + r)/2(1 - r) \) as \(\delta \) decreases to zero. Thus, for \(z = re^{it_0} \),
\[\text{Re}\{1 + zf''(z)/f'(z)\} \geq \alpha(1 + r)/2(1 - r). \]

Moreover, Pommerenke [6, p. 212] showed that if \(\eta > 0 \) and \(z = re^{it_0} \), then
\[\ln |z f'(z)| < \ln r + (1/\pi)[\Phi(t_0 + \eta) - \Phi(t_0 - \eta)] \ln[(1 + r)/(1 - r)] + B, \]
where \(B = 2\pi/\sin^2(\eta) \). Given \(\epsilon > 0 \), fix \(\eta > 0 \) such that \(\Phi(t_0 + \eta) - \Phi(t_0 - \eta) < (\alpha + \epsilon)\pi \). It then follows from (2) and (3) that
\[\alpha \rho(z) \leq 2re^{B\ln[(1 - r)/(1 + r)]^{1-\alpha-\epsilon}}. \]
Since \(\alpha < 1 \), we may choose \(\epsilon \) so that \(1 - \alpha - \epsilon > 0 \), and the conclusion follows.

Let \(f_r(z) = f(rz)/r \), \(0 < r < 1 \). Since \(\rho(f_r; z) \) is continuous on \(\overline{D} \), it is easy to see that \(R_1(f_r) \) and \(R_2(f_r) \) are the minimum and maximum, respectively, of \(\rho(f_r; z) \) on \(\partial D \). Then \(R_1(f_r) = \rho_m(r)/r \) and \(R_2(f_r) = \rho_M(r)/r \), so \(R_1(f) \) and \(R_2(f) \) are the limit inferior and limit, respectively, of \(R_1(f_r) \) and \(R_2(f_r) \), as \(r \to 1 \).

Theorem 1. \(\overline{CV(R_1, R_2)} \subseteq CVG(R_1, R_2) \).

Proof. Assume \(f \in CV(R_1, R_2) \), and let \(\eta = f(\xi) \in \partial f(D) \). Applying Blaschke’s Rolling Theorem to \(f_r \), we have
\[B(f_r(\xi) - R_1(f_r)n(\zeta), R_1(f_r)) \subseteq B(f_r(\xi) - R_2(f_r)n(\zeta), R_2(f_r)) \]
for each \(\zeta \in \partial D \). If \(w \in f(D) \), then \(w \in f_r(D) \) for sufficiently large \(r \). Letting \(r \) tend to 1, the right side of (4) yields
\[w \in B(f(\xi) - R_1(f)n(\zeta), R_2(f)) \subseteq B(f(\xi) - R_2n(\zeta), R_2). \]
Setting \(D_2(\eta) = B(f(\xi) - R_2n(\zeta), R_2) \), we conclude (since \(f(D) \) is open) that \(f(D) \subseteq D_2(\eta) \). This establishes the right side of (1). If \(R_1 = 0 \), then the left side of (1) is clear, so assume \(R_1 > 0 \). Let \(w \in B(f(\xi) - R_1(f)n(\zeta), R_1(f)) \) and choose a sequence of values of \(r \) converging to 1 such that \(R_1(f_r) \to R_1(f) \). From (4) we have
\[w \in B(f_r(\xi) - R_1(f_r)n(\zeta), R_1(f_r)) \subseteq f_r(D) \]
for all these values of \(r \) which are sufficiently near 1, and consequently \(w \in f(D) \). Thus,

\[
B(f(\zeta) - R_1 n(\zeta), R_1) \subseteq B(f(\zeta) - R_1(f)n(\xi), R_1(f)) \subseteq f(D),
\]

and \(D_1(\eta) = B(f(\zeta) - R_1 n(\zeta), R_1) \) satisfies the left side of (1).

Suppose \(\Omega \) is a bounded convex region. Given \(z \in \Omega \), let \(\phi_z \) denote the conformal mapping of \(D \) onto \(\Omega \) satisfying \(\phi_z(0) = z \) and \(\phi_z'(0) > 0 \). The hyperbolic metric for \(\Omega \) has density \(\lambda_{\Omega}(z) = 1/\phi_z'(0) \). The following lemma will be needed in subsequent sections and follows directly from results on \(\lambda_{\Omega} \) in [5, p. 474].

Lemma 2. Suppose \(\Omega \) is a bounded convex region that is symmetric about two distinct lines which intersect at \(z_0 \). If \(z_1 \in \Omega \setminus \{z_0\} \) and \(z_1 = (1-t)z_0 + tz_1 \), \(0 < t < 1 \), then \(\phi_{z_1}'(0) < \phi_{z_0}'(0) < \phi_{z_1}'(0) \).

3. Geometry of \(f(D) \)

Assume \(0 < R < \infty \), \(a, b \in C \) (the complex numbers), and \(|a - b| \leq 2R \). If \(|a - b| < 2R \), then there are two open disks \(\Delta_1 \) and \(\Delta_2 \) of radius \(R \) such that \(a, b \in \partial \Delta_1 \cap \partial \Delta_2 \), and we set \(E(a, b; R) = \Delta_1 \cap \Delta_2 \). If \(|a - b| = 2R \), set \(E(a, b; R) = B((a + b)/2, R) \). We shall say that a set \(A \subseteq C \) is \(R \)-convex if \(\text{diam}(A) \leq 2R \) and \(E(a, b; R) \subseteq A \) for all choices of \(a \) and \(b \) in \(A \). Assuming \(\text{diam}(A) \leq 2R \), we define the \(R \)-hull of \(A \) to be the smallest \(R \)-convex set containing \(A \) and denote it by \(\text{co}_R(A) \). In the limiting case when \(R = \infty \) we set \(E(a, b; \infty) = (a, b) \), which yields the usual notions of convexity and convex hull. Mejia and Minda [4] obtained the following result.

Theorem A. If \(1 \leq R \leq \infty \) and \(f \in S \), then \(f \in CV(0, R) \) if and only if \(\text{diam}(f(D)) \leq 2R \) and \(E(a, b; R) \subseteq f(D) \) for all \(a, b \in f(D) \).

In the theorem which follows we present characterizations of \(CVG(R_1, R_2) \) in terms of the geometry of \(f(D) \). Suppose \(0 < R_1 \leq R_2 \leq \infty \) and let \(a, b \in C \). If \(|a - b| \leq 2(R_2 - R_1) \), then \(\text{diam}(B(a, R_1) \cup B(b, R_1)) \leq 2R_2 \), and we set \(E(a, b; R_1, R_2) = \text{co}_{R_2}(B(a, R_1) \cup B(b, R_1)) \). If \(R_1 = 0 \) and \(R_2 > 0 \), we set \(E(a, b; 0, R_2) = E(a, b; R_2) \).

Theorem 2. If \(0 \leq R_1 \leq R_2 \leq \infty \), \(R_2 \geq 1 \), and \(f \in S \), then the following are equivalent:

(i) \(f \in CVG(R_1, R_2) \);
(ii) \(f(D) \) is the intersection of open disks of radius \(R_2 \) and, in the case \(R_1 > 0 \), the union of open disks of radius \(R_1 \);
(iii) \(\forall u, v \in f(D) \exists a, b \in f(D) \) such that \(u, v \in E(a, b; R_1, R_2) \subseteq f(D) \);
(iv) \(f \in CV \), and for each \(\zeta \in \partial D \) for which \(f(\zeta) \) is finite,

\[
f(D) \subseteq B(f(\zeta) - R_2 n(\zeta), R_2),
\]

and in the case \(R_1 > 0 \), \(B(f(\zeta) - R_1 n(\zeta), R_1) \subseteq f(D) \).
Remark. If $R_2 = \infty$, then an open disk of radius R_2 is to be interpreted as an open half-plane, and $B(f(\zeta) - R_2 n(\zeta), R_2)$ is to be interpreted as the limiting half-plane as $R_2 \to \infty$.

Proof. (i) \Rightarrow (ii). Assuming $f \in CVG(R_1, R_2)$, we assert that $f(D) = \cap \{D_2(\eta): \eta \in \partial f(D)\}$. Certainly $f(D) \subseteq \cap \{D_2(\eta): \eta \in \partial f(D)\}$. To obtain the opposite containment, suppose $w \notin f(D)$. Fix $w_0 \in f(D)$ and choose $\eta \in [w_0, w] \cap \partial f(D)$. Then $f(D) \subseteq D_2(\eta)$ implies $w \notin D_2(\eta)$, and thus $w \notin \cap \{D_2(\eta): \eta \in \partial f(D)\}$. Now assume $R_1 > 0$ and let $w \in f(D)$. If $\text{dist}(w, \partial f(D)) \geq R_1$, let $D(w) = B(w, R_1)$. If $\text{dist}(w, \partial f(D)) < R_1$, choose $\eta \in \partial (f(D))$ such that $|\eta - w| = \text{dist}(w, \partial f(D))$ and let $D(w) = D_1(\eta)$. Then $f(D) = \bigcup\{D(w): w \in f(D)\}$, and (ii) is established.

(ii) \Rightarrow (iii). Let $u, v \in f(D)$. Suppose first that $R_1 = 0$ and let $\{D_\alpha: \alpha \in A\}$ be a collection of open disks of radius R_2 such that $f(D) = \cap \{D_\alpha: \alpha \in A\}$. Since $f(D)$ is convex (being the intersection of open disks), $[u, v] \subseteq f(D)$. Choose a and b on the line determined by u and v such that $[u, v] \subseteq (a, b) \subseteq f(D)$. For each $\alpha \in A$, $(a, b) \subseteq D_\alpha$, and hence $E(a, b; R_2) \subseteq D_\alpha$. Thus, $u, v \in E(a, b; R_2) \subseteq f(D)$. Now assume that $R_1 > 0$, in which case we assume in addition that $f(D)$ is the union of open disks of radius R_1. Choose open disks D_u and D_v of radius R_1 with centers a and b, respectively, such that $u \in D_u \subseteq f(D)$ and $v \in D_v \subseteq f(D)$. Since $f(D)$ lies in a disk of radius R_2, $\text{diam}(D_u \cup D_v) \leq 2R_2$. We claim that $E(a, b; R_1, R_2) = \text{co}_R(D_u \cup D_v) \subseteq f(D)$. Indeed, since $CVG(R_1, R_2) \subseteq CVG(0, R_2)$, we may apply the earlier part of the proof to conclude that $E(a', b'; R_2) \subseteq f(D)$ for all $a' \in D_u$ and $b' \in D_v$, and the conclusion follows.

(iii) \Rightarrow (iv). Since $E(a, b; R_1, R_2)$ is a convex set, (iii) implies that $f(D)$ is convex. It is implicit in (iii) that $\text{diam}(f(D)) \leq 2R_2$. Fix $\zeta \in \partial D$ such that $f(\zeta) \neq \infty$, and consider $w \in f(D)$. Suppose first that $R_1 > 0$. For sufficiently small $\varepsilon > 0$, $f(\zeta - \varepsilon n(\zeta)) \in f(D)$, so there are points a_ε and b_ε such that $w, f(\zeta - \varepsilon n(\zeta)) \in E(a_\varepsilon, b_\varepsilon; R_1, R_2) \subseteq f(D)$. Let ε tend to zero through a sequence of values for which a_ε and b_ε are convergent, say to a and b, respectively. Then $w \in E(a, b; R_1, R_2)$, and $f(\zeta) \in \partial E(a, b; R_1, R_2)$. Since $R_1 > 0$, $\partial f(D)$ has a tangent at $f(\zeta)$, and it follows from the shape of $E(a, b; R_1, R_2)$ that

$$B(f(\zeta) - R_1 n(\zeta), R_1) \subseteq E(a, b; R_1, R_2) \subseteq B(f(\zeta) - R_2 n(\zeta), R_2).$$

Thus, $B(f(\zeta) - R_1 n(\zeta), R_1) \subseteq f(D)$, and $w \in B(f(\zeta) - R_2 n(\zeta), R_2)$ for all $w \in f(D)$. Since $f(D)$ is open we conclude that $f(D) \subseteq B(f(\zeta) - R_2 n(\zeta), R_2)$. Now consider the case $R_1 = 0$. The preceding argument yields $f(D) \subseteq B(f(\zeta) - R_2 n(\zeta), R_2)$ when $\partial f(D)$ has a tangent at $f(\zeta)$, and this occurs for all but a countable number of points $\zeta \in \partial D$. Suppose $\partial f(D)$ has a corner at $f(\zeta)$, $\zeta = e^{i\theta}$, and let $n(\zeta^+)$ and $n(\zeta^-)$ denote the limits of $n(e^{it})$ as t tends to θ from the right and left, respectively. From the previous case we
conclude that
\[f(D) \subseteq B(f(\zeta) - R_2n(\zeta^+), R_2) \cap B(f(\zeta) - R_2n(\zeta^-), R_2). \]

Since, \(\text{arg } n(\zeta^-) \leq \text{arg } n(\zeta) \leq \text{arg } n(\zeta^+) \), the right side of Equation (5) lies in
\[B(f(\zeta) - R_2n(\zeta), R_2). \]

Finally, it is clear that (iv) implies (i).

The following result occurs in the proof of (iii) implies (iv) in Theorem 2, and we record it here for emphasis.

Corollary. Suppose \(f \in \text{CVG}(0, R) \) and \(\partial f(D) \) has a corner at \(f(\zeta), \zeta = e^{it_0} \). Then
\[f(D) \subseteq B(f(\zeta) - R_2n(\zeta^+), R_2) \cap B(f(\zeta) - R_2n(\zeta^-), R_2), \]
where \(n(\zeta^+) \) and \(n(\zeta^-) \) denote the limits of \(n(e^{it}) \) as \(t \to t_0 \) from the right and left, respectively.

4. Covering properties

Given \(f \) in \(\text{CV} \), let \(d(f) \) and \(M(f) \) be the minimum and maximum, respectively, of \(|f(z)| \) on \(|z| = 1 \). In general, \(1/2 \leq d(f) \leq M(f) \leq \infty \).

Goodman [1] considered the problems of finding \(\inf d(f) \) and \(\sup M(f) \) for \(f \) in \(\text{CV}(0, R) \), and he found the following function and its rotations to be extremal for both problems.

Example. If \(1 \leq R < \infty \), let \(k_R(z) = z/(1 - z\sqrt{1 - 1/R^2}) \), and if \(R = \infty \), let \(k_\infty(z) = z/(1 - z) \). Then \(k_R(D) \) is \(B(\sqrt{R^2 - R}, R) \) or \(\{ z: \text{Re } z > -1/2 \} \), depending on whether \(R < \infty \) or \(R = \infty \), respectively. To avoid the need to distinguish between the two cases, \(R < \infty \) and \(R = \infty \), we shall agree, in the case \(R = \infty \), to interpret \(B(\sqrt{R^2 - R}, R) \) to be \(\{ z: \text{Re } z > 1/2 \} \) and quantities such as \(R - \sqrt{R^2 - R} \) to be their limits (in this case \(1/2 \)) as \(R \to \infty \). Then for \(1 \leq R \leq \infty \) we have \(R_1(k_R) = R = R_2(k_R) \), \(d(k_R) = R - \sqrt{R^2 - R} \), and \(M(k_R) = R + \sqrt{R^2 - R} \).

The conclusions of the following theorem were obtained by Goodman [1] for the class \(\text{CV}(R_1, R_2) \). The proof for \(\text{CVG}(R_1, R_2) \) is virtually the same and will not be repeated.

Theorem B. If \(f \in \text{CVG}(R_1, R_2) \), then
\[d(f) \geq R_2 - \sqrt{R^2 - R_2} \]
and
\[M(f) \leq R_2 + \sqrt{R^2 - R_2}. \]
Equality occurs in (6) or (7) if and only if f is a rotation of kR_2. Moreover, if $1 \leq R_1 \leq \infty$, then

$$d(f) \leq R_1 - \sqrt{R_2^2 - R_1^2},$$

with equality if and only if f is a rotation of kR_1.

We now look at the effect on $M(f)$ when $f \in \text{CVG}(R_1, R_2)$ and f covers the disk $B(0, d)$, where $R_2 - \sqrt{R_2^2 - R_1^2} < d < 1$. We shall need to also assume that $R_1 \leq d$. The case $R_2 = \infty$ is somewhat special in that functions in $\text{CVG}(R_1, \infty)$ need not be bounded, and we begin by discussing some of the features of this situation.

Given $r > 0$, let g_r be the conformal mapping of D onto $\text{co}(B(0, r) \cup (0, \infty))$ such that $g_r(0) = 0$ and $g_r'(0) > 0$. If $0 < r_1 < r_2$, then g_r_i is properly subordinate to g_r, and consequently $g_r'(0)$ is a strictly increasing function of r. If $r \leq \pi/4$, then $g_r < (1/2) \log[(1 + z)/(1 - z)]$ and $g_r'(0) < 1$, whereas $r \geq 1$ implies $z < g_r$ and $g_r'(0) > 1$. Thus, there is a unique $r^* \in (\pi/4, 1)$ such that $g^* = g_{r^*} \in \text{CV}$.

Lemma 3. Assume $f \in \text{CV}$. If $d(f) > r^*$, then f is bounded. If $d(f) = r^*$ and f is not bounded, then f is a rotation of g^*.

Proof. Suppose $d(f) > r^*$ and f is not bounded. Choose $\{w_n\}_{n=1}^{\infty} \subseteq f(D)$ such that $w_n \to \infty$ and $\arg w_n \to \beta$. By a rotation we need only consider $\beta = 0$, in which case $\text{co}(B(0, d(f)) \cup (0, \infty)) \subseteq f(D)$. Thus, $g^* < f$, and, since both functions are normalized, we conclude that $g^* = f$ and $d(f) = r^*$.

Now, suppose $0 \leq R_1 \leq R_2 < \infty$, $R_2 > 1$, $R_2 - \sqrt{R_2^2 - R_1^2} < d < 1$, and $R_1 \leq d$. Let $a \in [R_1 - d, 2R_2 - R_1 - d]$ and let U_a be $B(0, d) \cup B(a, R_1)$ or $B(0, d) \cup (0, a)$ depending on whether $R_1 > 0$ or $R_1 = 0$. Then $\text{diam } U_a \leq 2R_2$, and there is a unique conformal map φ_a of D onto $\text{co}_{R_1}(U_a)$ such that $\varphi_a(0) = 0$ and $\varphi_a'(0) > 0$. If $a \in [R_1 - d, d - R_1]$, then $\varphi_a(D) = B(0, d)$ and $\varphi_a'(0) = d < 1$. Since $R_1 \leq d$, the regions $\varphi_a(D)$ expand as a increases, and consequently $\varphi_a'(0)$ is a strictly increasing function of a on $[d - R_1, 2R_2 - R_1 - d]$. If $a = 2R_2 - R_1 - d$, then $\varphi_a(D) = B(R_2 - d, R_2)$, and since $d > R_2 - \sqrt{R_2^2 - R_1^2}$, Lemma 2 implies that $\varphi_a'(0) = k_{R_2}'(0) = 1$. Thus, there is a unique $a \in [d - R_1, 2R_2 - R_1 - d]$ for which $\varphi_a'(0) = 1$. This normalized function, denoted hereafter by h_d, is in $\text{CVG}(R_1, R_2)$.

Now, consider $R_2 = \infty$. In this case we choose $a \in (R_1 - d, \infty)$ and define φ_a as before. As long as $d > r^*$, $\lim_{a \to \infty} \varphi_a'(0) = g_d'(0) > 1$, and again there will be a unique value of a for which $\varphi_a'(0) = 1$. This normalized function will also be denoted by h_d.

Theorem 3. Assume $0 \leq R_1 \leq d$, $R_2 > 1$, and $R_2 - \sqrt{R_2^2 - R_1^2} < d < 1$. Let $f \in \text{CVG}(R_1, R_2)$ and suppose $d(f) \geq d$. If $R_2 < \infty$, then $M(f) \leq M(h_d)$,
with equality if and only if \(f \) is a rotation of \(h_d \). If \(R_2 = \infty \), then the same conclusions hold as long as \(d > r^* \).

Proof. In either case, choose \(\zeta \in \partial D \) such that \(|f(\zeta)| = M(f)| \). By a rotation it suffices to consider \(f(\zeta) > 0 \), in which case \(n(\zeta) = 1 \). Then,

\[
B(f(\zeta) - R_1, R_1) \subseteq f(D),
\]

and consequently \(\co_{R_2}(B(0, d) \cup B(f(\zeta) - R_1, R_1)) \subseteq f(D) \). If \(f(\zeta) \geq M(h_d) \), then \(h_d \) is subordinate to \(f \). But, \(f'(0) = 1 = h'_d(0) \), so \(f = h_d \).

If \(R_2 = \infty \), \(1/2 \leq d \leq r^* \), and \(f \in \text{CVG}(R_1, R_2) \), then \(f(D) \) may not be bounded, but there is a restriction on how large a sector \(f \) may cover. For each \(\theta \in (0, \pi] \), let \(\sigma_\theta \) be the conformal map of \(D \) onto \(\co(B(0, d) \cup \{z : |\arg z| < \theta/2\}) \) such that \(\sigma_\theta(0) = 0 \) and \(\sigma'_\theta(0) > 0 \). Let \(\sigma_0 = g_d \). Then \(\sigma'_\theta(0) \) is a strictly increasing function of \(\theta \) on \([0, \pi]\). Moreover, \(d \geq 1/2 \) implies \(z/(1-z) < g_\pi \) and \(g_\pi(0) \geq 1 \), with equality only when \(d = 1/2 \). Also, \(d \leq r^* \) implies \(\sigma_0 < g^* \) and \(\sigma'_0(0) \leq 1 \), with equality only when \(d = r^* \). Thus, there is a unique \(\theta(d) \) in \([0, \pi]\) such that \(\sigma'_\theta(d)(0) = 1 \), and we denote this function by \(s_d \).

Theorem 4. Suppose \(1/2 \leq d < r^* \), \(f \in \text{CVG}(R_1, \infty) \), \(R_1 \leq d \), and \(d(f) \geq d \). If \(f(D) \) contains an open sector of angle \(\theta(d) \), then \(f \) is a rotation of \(s_d \).

Proof. Suppose \(f(D) \) contains an open sector \(\Sigma \) with vertex angle \(\theta(d) \). By a rotation we may assume that \(\Sigma \) is symmetric with respect to the real axis and contains \((0, \infty)\), in which case \(s_d < f \). Thus, \(f = s_d \).

5. Growth of \(|f'|\)

The following result, due to Pommerenke [6, Theorem 1], shows that for convex functions the growth of \(M(r, f') = \max\{|f'(z)| : |z| = r\} \) is governed by the magnitude of the largest jump of \(\Phi \).

Theorem C. If \(f \in \text{CV} \) and \(\alpha \pi = \max\{\Phi(t^+) - \Phi(t^-) : 0 \leq t \leq 2\pi\} \), then

\[
M(r, f') \geq 1/4(1-r)^\alpha
\]

and

\[
\alpha = \lim_{r \to 1} \log M(r, f') / \log(1/(1-r)) .
\]

If \(f \in \text{CVG}(R_1, R_2) \), \(f(D) \) is bounded, and \(R_1 > 0 \), then \(\Phi \) is continuous and \(\alpha = 0 \). Hence we consider the case \(R_1 = 0, \ R_2 = R \in [1, \infty) \), and proceed to determine the largest possible jump of \(\Phi \). First we discuss the function in \(\text{CVG}(0, R) \) which exhibits the extremal behavior.

Example. Suppose \(\alpha \in [0, 1) \), let \(\phi(z) = (1+z)/(1-z) \), and consider \(f_\alpha(z) = \phi^{-1}(\phi(z)^{-1})/(1-\alpha) \). Elementary calculations show that \(f(D) = E(a, b; R) \), where \(a = -(1-\alpha)^{-1} \), \(b = (1-\alpha)^{-1} \), and

\[
R = 1/(1-\alpha) \sin[(1-\alpha)\pi/2].
\]
Thus, \(f \in \text{CVG}(0, R) \). For each \(R \in [1, \infty) \) there is a unique \(\alpha = \alpha(R) \in [0, 1) \) determined implicitly by (11), and we set \(f_R = f_{\alpha(R)} \). The function \(\Phi(f_R, t) \) is continuous on \((0, \pi) \cup (\pi, 2\pi) \) and has a jump discontinuity of magnitude \(\alpha(R)\pi \) at 0 and at \(\pi \).

Theorem 5. If \(1 \leq R < \infty \) and \(f \in \text{CVG}(0, R) \), then \(\Phi(t^+) - \Phi(t^-) \leq \alpha(R)\pi \) for all \(t \), and equality occurs for some \(t \) if and only if \(f \) is a rotation of \(f_R \).

Proof. Fix \(\zeta = e^{it} \) and assume \(\Phi(t^+) - \Phi(t^-) = \beta\pi > 0 \). By the corollary to Theorem 2,

\[
\Omega = \{ f(D) \subseteq \Omega = B(f(\zeta) - Rn(\zeta^+), R) \cap B(f(\zeta) - Rn(\zeta^-), R) \}.
\]

Note that \(\Omega = E(f(\zeta), b; R) \) for an appropriate choice of \(b \in C \), and the interior angle of \(\Omega \) at \(f(\zeta) \) is \((1 - \beta)\pi \). There exist \(\mu, \nu \in C, |\mu| = 1 \), such that \(G = (\mu f_R + \nu)(D) = E(f(\zeta), c; R) \), where \(c \) lies on the ray from \(f(\zeta) \) through \(b \). Now suppose \(\beta > \alpha(R) \). Then \(|c - f(\zeta)| > |b - f(\zeta)| \) and \(f(D) \subseteq \Omega \subseteq G \). Let \(g \) be the conformal map of \(D \) onto \(G \) such that \(g(0) = f(0) \) and \(g'(0) > 0 \). Then \(\beta > \alpha(R) \) implies \(f \) is properly subordinate to \(g \), and consequently \(1 = f'(0) < g'(0) \). But Lemma 2 gives \(g'(0) \leq [(\mu f_R + \nu)'(0)]^2 = 1 \), a contradiction. Thus, \(\beta \leq \alpha(R) \), and the conclusion follows. If \(\beta = \alpha(R) \), then the same considerations yield \(f(D) = G \) and \(f(0) = 0 = (\mu f_R + \nu)(0) \), so \(f \) is a rotation of \(f_R \).

Corollary. If \(1 \leq R < \infty \) and \(f \in \text{CVG}(0, R) \), then

\[
M(r, f') = O((1-r)^{-\alpha(R)}).
\]

Proof. Suppose \(f \in \text{CVG}(0, R) \) and \(f \neq f_R \). By the previous theorem, \(\beta = \max\{\Phi(t^+) - \Phi(t^-) : 0 \leq t \leq 2\pi\}/\pi < \alpha(R) \). If \(\epsilon \) is chosen so that \(\beta + \epsilon < \alpha(R) \), then (10) gives \(M(r, f') = O((1-r)^{-(\beta+\epsilon)}) = o((1-r)^{-\alpha(R)}) \). Now, consider \(f_R \). A brief calculation yields

\[
f_R'(z) = 4/[((1+z)^{1-\alpha(R)} + (1-z)^{1-\alpha(R)})^2((1-z^2)^{\alpha(R)})].
\]

The quantity \((1+z)^{1-\alpha(R)} + (1-z)^{1-\alpha(R)}\) has a positive minimum modulus \(m \) on \(\overline{D} \), so \(|f_R'(z)| \leq 4/m^2((1-|z|^2)^{\alpha(R)}) \), and hence \(M(r, f_R') = O((1-r)^{-\alpha(R)}) \).

6. Comments

It follows readily from classical results in differential geometry (e.g., see [7]) that if \(f \in \text{CVG}(R_1, R_2) \) and \(f \) is analytic on \(\overline{D} \), then \(f \in \text{CV}(R_1, R_2) \), but it remains to be determined whether or not \(\text{CVG}(R_1, R_2) = \text{CV}(R_1, R_2) \). Mejia and Minda [4] have shown that this is the case when \(R_1 = 0 \), and we expect that it is also true for \(R_1 > 0 \).

Very little seems to be known about the behavior of \(\rho_m(r) \) as \(r \to 1 \). Although Walsh noted that it need not be monotone, it would be interesting to know if \(\rho_m(r) \) has a limit as \(r \to 1 \), or if, perhaps, it has at most a finite number of local extrema on \((0, 1)\).
The results in Theorem 3 are incomplete due to the assumption $R_1 \leq d$. If $R_1 > d$, then for an appropriate choice of $a \in [R_1 - d, 2R_2 - R_1 - d]$ there is a normalized conformal mapping of D onto $\text{co}_{R_2}(B(R_1 - d, R_1) \cup B(a, R_1))$, and this may be the extremal function. However, in this case we do not get the subordination used in the proof of Theorem 3 because when f is rotated so that $M(f) = f(\zeta) > 0$, the point on $\partial f(D)$ nearest to $z = 0$ may not be $-d$.

REFERENCES