Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Persistence definitions and their connections


Authors: H. I. Freedman and P. Moson
Journal: Proc. Amer. Math. Soc. 109 (1990), 1025-1033
MSC: Primary 34C35; Secondary 54H20, 58F25, 92A15
MathSciNet review: 1012928
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give various definitions of types of persistence of a dynamical system and establish a hierarchy among them by proving implications and demonstrating counterexamples. Under appropriate conditions, we show that several of the definitions are equivalent.


References [Enhancements On Off] (What's this?)

  • [1] T. Burton and V. Hutson, Repellers in systems with infinite delay, J. Math. Anal. Appl. 137 (1989), 240-263. MR 981936 (90d:58141)
  • [2] G. Butler, H. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc. 96 (1986), 425-429. MR 822433 (87d:58119)
  • [3] -, Persistence in dynamical systems, J. Differential Equations 63 (1986), 255-263. MR 848269 (87k:54058)
  • [4] A. Fonda, Uniformly persistent semidynamical systems, Proc. Amer. Math. Soc. 104 (1988), 111-116. MR 958053 (90a:34094)
  • [5] H. I. Freedman and P. Waltman, Persistence in models of three interacting predator-prey populations, Math. Biosci. 68 (1984), 213-231. MR 738903 (85h:92037)
  • [6] -, Persistence in a model of three competitive populations, Math. Biosci. 73 (1985), 89-101. MR 779763 (86i:92038)
  • [7] T. C. Gard, Uniform persistence in multispecies population models, Math. Biosci. 85 (1987), 93-104. MR 904450 (88m:92040)
  • [8] J. Guckenheimer and Ph. Holmes, Nonlinear oscillations, dynamical systems, and bifurcation of vector fields, Applied Math. Sci. 42 (1983). MR 709768 (85f:58002)
  • [9] J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal. 20 (1989), 388-395. MR 982666 (90b:58156)
  • [10] J. Hofbauer and K. Sigmund, Permanence for replicator equations, Lecture Notes in Economics and Math. Systems, vol. 287, Springer (1987), 70-85. MR 1120043
  • [11] V. Hutson, A theorem on average Liapunov functions, Monatsh. Math. 98 (1984), 267-275. MR 776353 (86c:34086)
  • [12] V. Hutson and R. Law, Permanent coexistence in general models of three interacting species, J. Math. Biol. 21 (1985), 285-298. MR 804152 (87b:92026)
  • [13] V. Hutson and K. Schmitt, Permanence in dynamical systems, preprint.
  • [14] G. Kirlinger, Permanence in Lotka-Volterra equations: Linked predator-prey systems, Math. Biosci. 82 (1986), 165-191. MR 871637 (88a:92043)
  • [15] R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl. Math. 29 (1975), 243-253. MR 0392035 (52:12853)
  • [16] V. A. Pliss, Nonlocal problems of the theory of oscillations, Academic Press, New York, 1966. MR 0196199 (33:4391)
  • [17] H. Rouche, P. Habets and M. Laloy, Stability theory by Liapunov's direct method, Appl. Math. Sci. 22 (1977).
  • [18] P. Schuster, K. Sigmund and R. Wolff, On $ \omega $-limits for competition between three species, SIAM J. Appl. Math. 37 (1979), 49-54. MR 536302 (80g:92029)
  • [19] J. Hofbauer and J. W-H. So, Uniform persistence and repellers for maps, Proc. Amer. Math. Soc. 107 (1989), 1137-1142. MR 984816 (90i:58096)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C35, 54H20, 58F25, 92A15

Retrieve articles in all journals with MSC: 34C35, 54H20, 58F25, 92A15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1012928-6
PII: S 0002-9939(1990)1012928-6
Article copyright: © Copyright 1990 American Mathematical Society