Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On $ (0,1,2)$ interpolation in uniform metric

Authors: J. Szabados and A. K. Varma
Journal: Proc. Amer. Math. Soc. 109 (1990), 975-979
MSC: Primary 41A05; Secondary 41A10
MathSciNet review: 1013983
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: From the well known theorem of G. Faber it follows that for any given matrix of nodes there exists a continuous function for which the Lagrange interpolation polynomial $ {L_n}[f,x]$, generated by the $ n$ th row of the matrix, does not tend uniformly to $ f(x)$. In this paper we shall provide analogous results for the related operator $ {H_{n,3}}[f,x]$ as defined below.

References [Enhancements On Off] (What's this?)

  • [1] P. Erdös, On the uniform distribution of the roots of certain polynomials, Ann. of Math. (2) 43 (1942), 59–64. MR 0005947
  • [2] P. Erdös and P. Turán, On interpolation. I, Ann. of Math. 38 (1937), 142-155.
  • [3] P. Erdős and P. Turán, An extremal problem in the theory of interpolation, Acta Math. Acad. Sci. Hungar 12 (1961), 221–234 (English, with Russian summary). MR 0146571
  • [4] G. Faber, Über die interpolatorische Darstellung stetiger Funktionen, Jahresber. der Deutschen Math. Ver. 23 (1914), 190-210.
  • [5] Ryozi Sakai, Hermite-Fejér interpolation prescribing higher order derivatives, Progress in approximation theory, Academic Press, Boston, MA, 1991, pp. 731–759. MR 1114810
  • [6] Gábor Szegő, Orthogonal polynomials, 3rd ed., American Mathematical Society, Providence, R.I., 1967. American Mathematical Society Colloquium Publications, Vol. 23. MR 0310533
  • [7] P. Vértesi, Hermite-Fejér interpolations of higher order. I, Acta Math. Hungar. 54 (1989), no. 1-2, 135–152. MR 1015784, 10.1007/BF01950715

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A05, 41A10

Retrieve articles in all journals with MSC: 41A05, 41A10

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society