Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On $ (0,1,2)$ interpolation in uniform metric


Authors: J. Szabados and A. K. Varma
Journal: Proc. Amer. Math. Soc. 109 (1990), 975-979
MSC: Primary 41A05; Secondary 41A10
DOI: https://doi.org/10.1090/S0002-9939-1990-1013983-X
MathSciNet review: 1013983
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: From the well known theorem of G. Faber it follows that for any given matrix of nodes there exists a continuous function for which the Lagrange interpolation polynomial $ {L_n}[f,x]$, generated by the $ n$ th row of the matrix, does not tend uniformly to $ f(x)$. In this paper we shall provide analogous results for the related operator $ {H_{n,3}}[f,x]$ as defined below.


References [Enhancements On Off] (What's this?)

  • [1] P. Erdös, On the uniform distribution of the roots of certain polynomials, Ann. of Math. 43 (1942), 59-64. MR 0005947 (3:236a)
  • [2] P. Erdös and P. Turán, On interpolation. I, Ann. of Math. 38 (1937), 142-155.
  • [3] -, An extremal problem in the theory of interpolation, Acta Math. Acad. Sci. Hung. 12 (1961), 221-233. MR 0146571 (26:4093)
  • [4] G. Faber, Über die interpolatorische Darstellung stetiger Funktionen, Jahresber. der Deutschen Math. Ver. 23 (1914), 190-210.
  • [5] R. Sakai, Hermite-Fejér interpolation prescribing higher order derivatives, J. Approx. Theory (to appear). MR 1114810 (92m:41017)
  • [6] G. Szegö, Orthogonal Polynomials, vol. 23, Amer. Math. Soc. Colloq. Publ., Providence, RI, 1974. MR 0310533 (46:9631)
  • [7] P. Vértesi, Hermite-Fejér interpolations of higher order. I, Acta Math. Hungarian Academy, (1-2) 59 (1989), 135-152. MR 1015784 (90k:41008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A05, 41A10

Retrieve articles in all journals with MSC: 41A05, 41A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1013983-X
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society