Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Sums of semiprime, $ z,$ and $ d\ l$-ideals in a class of $ f$-rings


Author: Suzanne Larson
Journal: Proc. Amer. Math. Soc. 109 (1990), 895-901
MSC: Primary 06F25; Secondary 13C13, 54C30
MathSciNet review: 1015682
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper it is shown that there is a large class of $ f$-rings in which the sum of any two semiprime $ l$-ideals is semiprime. This result is used to give a class of commutative $ f$-rings with identity element in which the sum of any two $ z$-ideals which are $ l$-ideals is a $ z$-ideal and the sum of any two $ d$-ideals is a $ d$-ideal.


References [Enhancements On Off] (What's this?)

  • [1] A. Bigard, K. Keimel, and S. Wolfenstein, Groupes et anneaux reficules, Lecture Notes in Math., vol. 608, Springer-Verlag, New York, 1977. MR 0552653 (58:27688)
  • [2] L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, New York, 1960. MR 0116199 (22:6994)
  • [3] L. Gillman and C. Kohls, Convex and pseudoprime ideals in rings of continuous functions, Math. Z. 72 (1960), 399-409. MR 0114115 (22:4942)
  • [4] M. Henriksen, Semiprime ideals of $ f$-rings, Sympos. Math. 21 (1977), 401-409. MR 0480256 (58:435)
  • [5] M. Henriksen and F. A. Smith, Sums of $ z$-ideals and semiprime ideals, Gen. Topology and its Relations to Modern Analysis and Algebra 5 (1982), 272-278. MR 698424 (84d:54032)
  • [6] C. B. Huijsmans and B. de Pagter, On $ z$-ideals and $ d$-ideals in Riesz spaces I, Nederl. Akad. Wetensch. Indag. Math. 42 (1980), 183-195. MR 577573 (81g:46010)
  • [7] -, Ideal theory in $ f$-algebras, Trans. Amer. Math. Soc. 269 (1982), 225-245. MR 637036 (83k:06020)
  • [8] S. Larson, Pseudoprime $ l$-ideals in a class of $ f$-rings, Proc. Amer. Math. Soc. 104 (1988), 685-692. MR 964843 (90a:06019)
  • [9] G. Mason, $ z$-ideals and prime ideals, J. Algebra 26 (1973), 280-297. MR 0321915 (48:280)
  • [10] -, Prime $ z$-ideals of $ C\left( X \right)$ and related rings, Canad. Math. Bull. 23 (1980), 437-443. MR 602597 (82c:54013)
  • [11] D. Rudd, On two sum theorems for ideals of $ C\left( X \right)$, Michigan Math. J. 17 (1970), 139-141. MR 0259616 (41:4252)
  • [12] H. Subramanian, $ l$-prime ideals in $ f$-rings, Bull. Soc. Math. France 95 (1967), 193-203. MR 0223284 (36:6332)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06F25, 13C13, 54C30

Retrieve articles in all journals with MSC: 06F25, 13C13, 54C30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1015682-7
PII: S 0002-9939(1990)1015682-7
Article copyright: © Copyright 1990 American Mathematical Society