Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Twistor spaces with Hermitian Ricci tensor


Authors: Johann Davidov and Oleg Muškarov
Journal: Proc. Amer. Math. Soc. 109 (1990), 1115-1120
MSC: Primary 53C55; Secondary 53C25
DOI: https://doi.org/10.1090/S0002-9939-1990-1017845-3
MathSciNet review: 1017845
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The twistor space $ Z$ of an oriented Riemannian $ 4$-manifold $ M$ admits a natural $ 1$-parameter family of Riemannian metrics $ {h_t}$ compatible with the almost-complex structures $ {J_1}$ and $ {J_2}$ introduced, respectively, by Atiyah, Hitchin and Singer, and Eells and Salamon. In the present note we describe the (real-analytic) manifolds $ M$ for which the Ricci tensor of $ \left( {Z,{h_t}} \right)$ is $ {J_n}$-Hermitian, $ n = 1\;{\text{or}}\;2$. This is used to supply examples giving a negative answer to the Blair and Ianus question of whether a compact almost-Kähler manifold with Hermitian Ricci tensor is Kählerian.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461. MR 506229 (80d:53023)
  • [2] A. L. Besse, Einstein manifolds, Springer-Verlag, Berlin, 1978. MR 867684 (88f:53087)
  • [3] D. E. Blair and S. Ianus, Critical associated metrics on symplectic manifolds, in Nonlinear Problems in Geometry, Contemp. Math. 51 (1986), 23-29. MR 848929 (87k:58059)
  • [4] J. Davidov and O. Muškarov, On the Riemannian curvature of a twistor space, preprint series of the ICTP, Trieste, 1988.
  • [5] A. Derdzinski, Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. Z. 172 (1980), 273-280. MR 581444 (82e:53053)
  • [6] -, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), 405-433. MR 707181 (84h:53060)
  • [7] J. Eells and S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 589-640. MR 848842 (87i:58042)
  • [8] Th. Friedrich and R. Grunewald, On Einstein metrics on the twistor space of a four-dimensional Riemannian manifold, Math. Nachr. 123 (1985), 55-60. MR 809333 (87c:53093)
  • [9] Th. Friedrich and H. Kurke, Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature, Math. Nachr. 106 (1982), 271-299. MR 675762 (84b:53043)
  • [10] N. J. Hitchin, Compact four-dimensional Einstein manifolds, J. Differential Geom. 9 (1974), 435-441. MR 0350657 (50:3149)
  • [11] -, Kählerian twistor spaces, Proc. London Math. Soc. 43 (1981), 133-150. MR 623721 (84b:32014)
  • [12] O. Muškarov, Structures presque hermitiennes sur des espaces twistoriels et leur types, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 307-309. MR 910366 (89b:53068)
  • [13] A. Vitter, Self dual Einstein metrics, in Nonlinear Problems in Geometry, Comtemp. Math. 51 (1986), 113-120. MR 848939 (87i:53071)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C55, 53C25

Retrieve articles in all journals with MSC: 53C55, 53C25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1017845-3
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society