Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A characterization of sums of $ 2n$th powers of global meromorphic functions


Author: Jesús M. Ruiz
Journal: Proc. Amer. Math. Soc. 109 (1990), 915-923
MSC: Primary 32C25; Secondary 12D15
DOI: https://doi.org/10.1090/S0002-9939-1990-1023347-0
MathSciNet review: 1023347
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a real analytic manifold. In this note we prove

Theorem. Let $ X$ be a compact analytic set of $ M$ and $ \sum $ its singular locus. Then, a meromorphic function $ h$ on $ X$ is a sum of $ 2n$-th powers of meromorphic functions if and only if, for every analytic curve $ \sigma :\left( { - \varepsilon ,\varepsilon } \right) \to X$ not contained in $ \sum $, it holds $ h \circ \sigma = a{t^m} + \cdots $, with $ a > 0$ and $ 2n$ dividing $ m$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32C25, 12D15

Retrieve articles in all journals with MSC: 32C25, 12D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1023347-0
Article copyright: © Copyright 1990 American Mathematical Society