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A CHARACTERIZATION OF SUMS OF 2«TH POWERS

OF GLOBAL MEROMORPHIC FUNCTIONS

JESÚS M. RUIZ

(Communicated by Louis J. Ratliff, Jr.)

Abstract. Let M be a real analytic manifold. In this note we prove

Theorem. Let X be a compact analytic set of M and L its singular locus. Then,

a meromorphic function h on X is a sum of 2n-th powers of meromorphic

functions if and only if for every analytic curve a: (—e, e) —» X not contained

in Z, it holds h o o = atm + ■ ■ ■ , with a > 0 and 2n dividing m .

Introduction

Let M be a real analytic manifold. The goal of this note is to prove the

following

Theorem. Let X be a compact analytic set of M and I its singular locus. Then,

a meromorphic function h on X is a sum of 2n-th powers of meromorphic

functions if and only if for every analytic curve a: (-e, e) —► X not contained

in X, it holds hoo = atm + ■ ■ ■ , with a > 0 and 2n dividing m .

(We allow a slight abuse of notation when either h o a = 0 or h o a is not

defined.)

This includes the solution of Hubert's 17th Problem given in [Rz]. Indeed,

for n = 1, the theorem above becomes

Corollary. A meromorphic function on X is a sum of squares of meromorphic

functions if and only if it is positive semidefinite off Z.

On the other hand, this theorem implies that h being a sum of 2«th powers

is a local question, which depends only on the germs hx for x a limit of regular

points.

Note that the singular locus has to be considered. Take, for instance, the

"stereographic closure" of Whitney's umbrella:

X = {(t,x,y, z)gR4: t2 + x2 +y2 + z2 = 1, (1 - t)x2 - zy2 = 0}.
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2
This set is a compact analytic set, and h = z/( 1 -/) = (x/y) is a sum of squares

of meromorphic functions on X (actually a square), although it is negative at

the singular point (0,0,0,-1).

Our proof is based on Becker's theory of 2«th powers in formally real fields

and uses two special features of the compact real analytic sets: their complete-

ness with respect to real valuations, and the Artin-Lang specialization property.

In addition, it also uses a real going-down for completions of excellent rings and

Hironaka's resolution of singularities.

Results similar to our theorem have been obtained for rational functions over

real algebraic varieties [Br-Sch, K-P, Sch], once the discussion of 2«th powers

was started by E. Becker [Bl, B2]. In the analytic setting, the same theorem has

been proved for X nonsingular of dimension 2 by W. Kucharz, [K].

1. Preliminaries

Let M, X, and X be as in the introduction. We shall review here several

facts from the theory of real analytic sets. All of them can be found in [B-W],

[C], [F], [T].

(1.1) Localizations. Let tf stand for the sheaf of germs of analytic functions

of M, and tf(M) for its ring of global sections; tf (M) is the ring of global

analytic functions on M. Then the ideal of X,

I = {f€(f(M):f\X = 0},

generates a coherent sheaf of ideals f c tf, and X is the support of tf If .

The ring of global sections of the latter sheaf is

Y(M,tflf)=tf(M)/I;

this is the ring of global analytic functions on X, denoted by tf(X). Thus,

a global analytic function on X is the restriction to X of a global analytic

function on M.

Now fix a point x € X. We have the local ring

cf(X)m,        m = {f€tf(X):f(x) = 0}.

On the other hand, consider the stalk of tf ¡f at x ,

(tfff)x = tfx/Itfx,

which we shall denote by tfx(X). The properties we need are

Lemma. The rings tf (X)m and tf (X) are excellent, and the canonical inclusion

tf(X)m —f tfx(X) induces an isomorphism of the completions.

(More details can be found in [Rz, §2]. For excellent rings and related notions

we refer to [M]).

(1.2) Irreducible components and dimension. Since X is compact, it has finitely

many irreducible components, say X., ..., X , whose ideals Ix, ... , Is are

the associated primes of / . Furthermore

dim(Z) = max{dim(X;): 1 < i < s}.
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On the other hand, for x € X,

dim^(X)m = max{dim(ArJ.) : x € X(}.

(1.3) Regular points. This is quite a delicate notion in the real analytic setting.

Here we shall adopt a definition of global nature:

Definition. A point x G X is a regular point if there are fx, ... , fr € I such

that

(i) The jacobian of fx, ... , fr has rank r at x .

(ii) The set  {z € X: fx(z) = ■■■ = fr(z) = 0}  coincides with I in a

neighborhood of x .

From 1.1 and the inverse mapping theorem, it follows easily that x € X is

regular if and only if tf(X) is a regular ring if and only if tf (X) is a regular

ring.

We denote

Reg(X) = {x € X: x is a regular point},

and then

(1.3.1) Reg(X) = \j\Keg(Xi)\\JXj J.

The singular locus S = X \ Reg(X) is also an analytic set of M in the global

sense: there is an analytic function A € tf(X) such that

X = {x€X:A(x) = 0},

(and A does not vanish identically on any X¡ ).

(1.4) Meromorphic functions. Let Jf(X) stand for the total ring of fractions of

the ring tf (X) ; this J£(X) is the ring of meromorphic functions on X . Thus,

a meromorphic function is a quotient h = f/g of two analytic functions, where

the denominator g does not vanish identically on any Xi.

Finally we remark that the canonical map

(1.4.1) Jf{X) -> Jf(Xx) x ■ ■ ■ x Jf(Xs): f - (f\Xx,..., f\Xs)

is an isomorphism (Chinese remainder theorem).

Note also that each y£(X/) is a formally real field.

2. Proof of the necessary condition

It is clear from 1.3.1 that for the proof of this half of the theorem we may

assume X irreducible, so that tf(X) is a domain and Jf(X) a field.

Now, let h € Jf(X) be a sum of 2«th powers, and consider an analytic

curve a : (—e , e) —► X not contained in Z, with h o a = atm + ■ ■ ■ , a s= 0 .
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First of all, we shall construct a valuation v of the field Jf(X), using the

curve a . This curve defines the following commutative diagram

cf (X)-!-► R{/}       ... - ,        tn
*v   '« j,   lJ     tp(j) = expansion of / o a at 0

where x = cr(0) and m is the ideal corresponding to x. We have the prime

ideals

p = kertp,        q = p n cf(X)m = ker y/

In this situation we claim:

(2.1) The localization tf(X)   is a regular ring.

Indeed, by the Lemma in 1.1, the homomorphism tf(X) —► tfx(X) is flat.

From [M, 21.D, Theorem 51 (i), p. 155], it follows that tf(X) is regular if

tfx(X)   is also regular. Consequently, we deal with the latter ring.

Here we use the ideals Rk introduced in [T, Chapter II] to formulate several

jacobian criteria. First of all, the singular locus of X is the set

I = {z € X: tfz(X) is not regular}.

Then, as X is irreducible, by the Lemma in 1.1 and 1.2 we find

dimtfz(X) = dimtf (X)n = dim(X),

where n = maximal ideal of z . Hence

1. = {x € X: tfz(X) is not regular of dimension dim^)}.

Now, tfz(X) = tfz/Itfz and, from [T, Chapter II, Theorem 7.9], we get

germ Zx of Z at x - V(Rk(Itfx)),

with k = dim M - dim X.  Finally, the germ rr^ of (the image of)  a at x

is contained in  V(p) but not in Z¿., so that  V(p) is not contained in Zx =

V(Rk(Itfx)). In conclusion, p does not contain Rk(Itfx) and, from [T, Chapter

II, Theorem 3.1], we deduce that tfx(X)   is a regular ring.

As remarked before, this implies 2.1.   D

On the other hand, the homomorphism y/ induces an embedding k(c\) c

¿7/(R{/}), where /c(q) stands for the residue field of q . Then we restrict the

ordinary valuation of qf(R{t}) to a valuation V of /c(q). Coming back to our

meromorphic function h , since hoc = atm + ■ ■ ■ , a ^ 0, is defined, h € tf(X)

and its class h in /c(q) verifies 17(h) = m.

Now we need 2.1: since tf(X) is regular, V lifts to a valuation w of

qf(tf(X) ) = s£(X) with residue field /c(q). Furthermore, the ring W of w

dominates tf(X) and so h € W. Finally, consider the valuation v , composite

of V and w . The canonical epimorphism W —► k(c\) maps the ring V of v

onto the ring V of V.
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After this preparation we use [B2, 1.9, p. 146]: as h is a sum of 2«th powers

in J((X), 2m divides v(h). In other words, there is g € Jf(X) such that

g2n/h is a unit of V . In particular, g2"/h eFc^and g2" = h(g2n/h) € W^

Thus g and h belong to W, and, taking residue classes in >c(q), we have ~g, h

such that g~2n/h = g2"/h is a unit in V. We conclude 2« divides V(h) = m .

To end the proof we have to check that a > 0. Suppose, by way of contra-

diction, that a < 0. Then there would be regular points z = a(t), / > 0, with

h(z) < 0. Hence, it is enough to check that h is positive semidefinite off Z.

For that, take any representation of « as a sum of 2nth powers:

h = J2f'"/S2n,        f,,g€t?(X),g¿0.

Clearly h is positive semidefinite in Reg(X) \ {g = 0} , and this set is dense in

Reg(X) because X is irreducible. We are done.

Remark. The long argument used above is needed to handle the curves a on

which h can be evaluated, i.e. h = f/g with g o a / 0, but this evaluation

cannot be done on any expression h = Y^fin/gin because g¡oa = 0, for some

i.

3. Proof of the sufficient condition

Let h G J?(X) not be a sum of 2«th powers. We have to find an analytic

curve a : (-£, e) —> X, not contained in Z such that h o a = atm -\-, a ^ 0,

and either a < 0 or 2n does not divide m.

Since h is not a sum of 2«fh powers in Jf(X), applying the isomorphism

1.4.1, we find that h\Xi is not a sum of 2«th powers in ^€(Xt) for some /'.

Then choose an analytic function g which does not vanish identically on X{

and such that

Xi \ {g = 0} = Reg(*,.) \ (J X,= Reg(X) \ (J X,. = X \ {g = 0}
m ¡ai

and g "h = f is an analytic function.

Clearly, it is enough to find a: (-e, e) —> X not contained in {g = 0} such

that / o a — atm + ■ ■ ■ , a j= 0, and either a < 0 or 2n does not divide m .

Furthermore, formulated this way we can restrict ourselves to the case X = X¡,

i.e., to the case X is irreducible. In conclusion, we shall prove:

(3.1) Claim. Assume X is irreducible. Let f, g € tf(X), g =¿ 0, and / not a

sum of 2«th powers in Jf(X). Then, there is an analytic curve a: (—e,e)—*X

not contained in {g = 0}, such that foa = atm H— , a =¿ 0, and either a < 0

or 2n does not divide m .

First, we distinguish a special case:

Case when f is not a sum of squares in ^f(X). Here / must be negative in

some ordering of the field .£(X), and so will be g f. We deduce from [Rz,
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Corollary 2.4], that there is some point x G X with g(x) f(x) < 0. Finally,

pick any analytic curve <j: (-e, e) —> X with <t(0) = x . Clearly g o a ^ 0 and

foa = a + bt + -- , with a = f(a(0)) = f(x) < 0.   D

Once the precedent case is solved we consider the

Case when f is a sum of squares in Jf(X). By [B2, 1.9, p. 146], there is a real

valuation v of the field ^(X) such that 2n does not divide v(f). Fix an

ordering a of Jf(X) compatible with v and denote by V the convex hull of

R in Jf(X) with respect to a . This F is a valuation ring with residue field R

which dominates the local ring A = tf(X)m of some point x € X [Rz, Lemma

2.3].  Now, since a is compatible with v, the valuation ring of v contains

V and so it is V  for some prime ideal p of V. Hence, the value group of

V is a quotient of the one of V, and, as 2« does not divide the value of /

with respect to V , it does not divide the one with respect to V either. All this

means that we can suppose V is the valuation ring of v .

We have A —> V c K = qf(A) = Jf(X). The integral closure A of A in

K is contained in V, and V dominates a local ring B = A—, where m is a

maximal ideal of A , lying over the maximal ideal m of A. :

Now we consider the adic completions A~ and B~. Since A is excellent

(1.1), there is a unique zero divisor q~ of A~ such that B~ is the integral

closure of A~ ¡<C in K" = qf(A~/tC) [EGA, 7.6.2, p. 209]. We have the
diagram

A~^ A~/oT -» (A~I<CY =B~ C K~

Î    -
_►    B   CK

In this picture there is a room for the local ring A* - tfx(X). First, by

1.1, A" is the adic completion of A*. Thus, the zero divisors of A~ are the

extensions of the ones of A* [T, Chapter III, Corollary 4.8] and so q~ = q*A~

for a zero-divisor q* of A*. Finally, denote by B* the integral closure of

A*/q* in K* — qf(A*/q*). We have come to the diagram

7q~ - M~/V)~ =B~ C K~

I      Î I u

A*/q'   -   (A'/q)    =B   C K'

\s I u

CK

Indeed, B* is local [T, Chapter II, Proposition 2.5] and, again by [EGA] loc.cit.,

B~ is the adic completion of B*. Hence, B" dominates B* and B* domi-

nates B , and the maximal ideal of B generates the one of B*.

Now consider the ordering a we had in K. Since V is a-convex and V

dominates B, a is a central ordering in the local excellent domain B, in the

sense of [Rz, §1]. Then, by [Rz, Theorem 1.1], a extends to a total ordering



GLOBAL MEROMORPHIC FUNCTIONS 921

a~ in B". Let us denote by a* the restriction of a" to B*, and by V*

the convex hull of R in K* with respect to a*. The valuation ring V* is an

extension of V, has residue field R and dominates B*. We summarize the

situation in the next diagram

A*^ A*l<\   -» (¿7q*)~ =P* -»K* C Ä"
./ U   ; all residue fields are R.

A—->B   —V   cK

Now we apply Hironaka's resolution of singularities I and II ([Hl], cf. also

[H2, pp. 5.8-5.9] to the local excellent ring B and the ideal J = fB : there

is a proper birational morphism Z —» Spec B, where Z is a regular scheme

and Jtfz is simple everywhere, i.e., for each z G Z there is a regular system

of parameters xx, ... , xk of tfz z such that ftfz z = (xf1 • • • x"k).

In our situation, we choose the point z as follows. Since Z —► Spec P. is

proper and birational the valuation V dominates a unique local ring of Z : this

is our tfz z. But tfZz — B[hx, ... , hs]n for some elements hx, ... , hs € K

and an ideal n c B[hx, ... , hi. Finally notice that the residue field of n

is R, because this is the residue field of V and V dominates tfz z. As

R c B[hx ,...,hl, we can replace hx, ... , hs by hx - cx, ... , hs - cs for

suitable c( G R to have hx, ... , hs € n. Hence

Conclusion.

(3.1.3) The ring P, = B[hx, ... , hs]n is regular, hx, ... , hs € n, and

n has a regular system of parameters xx, ... , xk such that the

element f € A factorizes in B in the form / = uxf ' • ■ • x"k A

where m is a unit and p¡ > 0.

Once we have this, we come back to our valuation v . It holds:

v(f) = Pxy(xx) + ■ ■ ■ + pkv(xk),

and as 2« does not divide v(f), it does not divide pi for some i, say i = 1 .

To finish the proof of 3.1 we need a local homomorphism tp: B —> R{/} such

that

(3.1.4) <p(xx) = t;        tp(Xj) = üjt2" ,        üj^O, for j> 1,

(3.1.5) <p(g)¿0.

Indeed, from A = tf(X)m —> P,  -^-> R{/}  we obtain an analytic curve

a: (-e, e) —► X with f o a = tp(f), g o o = tp(g). Then, in view of 3.1.4

we have / = atm + ■ ■ ■ , where:

a = axa2 ■ ■ ■ ak ^ 0, ax = tp(u)(0) == 0 because tp(u) is a unit of R{/},

and 2n does not divide m = px+ 2nJ2j>iPJ, since it does not divide px.

Finally, by 3.1.5, g o a =¿ 0, so that a is not contained in {g = 0} .    u

Consequently, let us find tp verifying 3.1.4 and 3.1.5.
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First, consider B* [hx, ... , hs]. Clearly V* contains this ring, and so it must

dominate a localization B* = B*[hx, ... , /zjn- . This gives a local inclusion

Bx —> B*, which is faithfully flat, because

B*[hx,...,hs] = B*®B B[hx,...,hs]

and B -* B* is flat. It follows from [M, 13.B, Theorem 19, p. 79] that

(*) dim(B*) = dim(Bx) + dim(B*x/nB*x).

We claim

(**) nBx SB n .

For «,,..., hs G rt implies B*/nB* - B* /B* n nP*, and, since the maximal

ideal m of B generates the one m* of P*, we deduce B* n nP* D mP* = m*,

which gives B*/nB* = B* /m* = R. Thus, nP* is a maximal ideal and it must

coincide with n* .

From (*), (**) and [M, 21.D, Theorem 51, p. 155], we conclude that B"

is regular and

(3.1.6) x,, ... , xk are a regular system of parameters of B*.

Our next step is

(3.1.7) There is a local embedding B* —► R{xx, ... , xk}.

Indeed, the ring B* is an analytic ring, i.e., there is a local epimorphism

R{y} —► P*, y — (yx, ■■■ , yr) (by [T, Chapter II, Proposition 2.3] and the fact

that the residue field of P* is R). We extend it to another one,

R{y}[z]^B*[hx,...,hs],        z = (zx,...,zs),

by z( —► hi. Since hx, ... ,hs€\C , the inverse image of n* is the maximal

ideal (y, z), and we get a local epimorphism

R{y}[z](yz)^Br[hx,...,hs]n-=B;.

Finally, if / is the kernel, we obtain an isomorphism

R{y}[z\yz)/I^B*X.

Thus, R{y}[z], ,/7 is a local regular ring of dimension r + s - k , and the

inverse images x'x , ... , x'k of xx, ... , xk generate the maximal ideal (y, z)/I.

Now, R{y}[z], . being regular, there are x'k+x, ... , x'r+s which generate /.

Then x'x, ... , x'r+s generate (y, z) and also generate (y, z)R[[y, z]], because

R[[v> z]] is the completion of R{y}[z], ,. Hence, by the inverse mapping

theorem,

n, DA---A,)     (0)„0-D(yt,...,y,,z,,...,z,)
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and, since x'x, ... , x'r+s actually dwell in R{ y, z} , they generate (y, z)R{y, z}.

All this gives

R{y}[z]{yz)/I^R{y,z}/IR{y,z}-+R{x'x,...,x'k},

which, composed with the inverse of R/{y}[z],     .// —> B*, is the embedding

required in 3.1.7.   □

After 3.1.7, we are ready to produce tp: P, -+R{/}, verifying 3.1.4 and 3.1.5.

We put

tp:Bx ^B*x^R{xx,...,xk}^R{t},

t(Xj ) — t,     and     t(Xj) =a}t   ,        fly # 0, for j == 1.

Thus, tp fulfills 3.1.4. In addition, one can always choose the a 's to have

A"
i2t   ,...,akiT(g) = g(t,a2t2",...,akt2n)¿0,

since g sí 0 in R{x, , ... , xk} . This is the condition 3.1.5.

As explained before, this definition of tp completes the proof.   G
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