Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Grothendieck groups for hypersurface rings


Author: Øyvind Solberg
Journal: Proc. Amer. Math. Soc. 109 (1990), 943-950
MSC: Primary 13D15; Secondary 16A54, 18F30, 19A31
DOI: https://doi.org/10.1090/S0002-9939-1990-1027101-5
MathSciNet review: 1027101
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ and $ S$ be commutative complete noetherian local Gorenstein domains. If the category of finitely generated maximal Cohen-Macaulay modules over $ R$ and $ S$ are stably equivalent and the equivalence commutes with the first syzygy functors, then we show that the Grothendieck groups for $ R$ and $ S$ are isomorphic. In particular, we apply this result to hypersurface rings.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13D15, 16A54, 18F30, 19A31

Retrieve articles in all journals with MSC: 13D15, 16A54, 18F30, 19A31


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1027101-5
Article copyright: © Copyright 1990 American Mathematical Society