Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On the generic existence of special ultrafilters


Author: R. Michael Canjar
Journal: Proc. Amer. Math. Soc. 110 (1990), 233-241
MSC: Primary 03E05; Secondary 03E65, 04A20, 54A25
MathSciNet review: 993747
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the concept of the generic existence of $ P$-point, $ Q$-point, and selective ultrafilters, a concept which is somewhat stronger than the existence of these sorts of ultrafilters. We show that selective ultrafilters exist generically iff semiselectives do iff $ {m_c} = c$, and we show that $ Q$-point ultrafilters exist generically iff semi-$ Q$-points do iff $ {m_c} = d$, where $ d$ is the minimal cardinality of a dominating family of functions and $ {m_c}$ is the minimal cardinality of a cover of the real line by nowhere-dense sets. These results complement a result of Ketonen, that $ P$-points exist generically iff $ c = d$, and one of P. Nyikos and D. H. Fremlin, that saturated ultrafilters exist generically iff $ {m_c} = c = {2^{ < c}}$.


References [Enhancements On Off] (What's this?)

  • [1] T. Bartoszynski, Combinatorial aspects of measure and category, Univ. Warszawski Inst. Mat., preprint 9/84, 1984. MR 917147 (88m:04001)
  • [2] J. Baumgartner and R. Laver, Iterated perfect set forcing, Ann. Math. Logic 17 (1979), 271-288. MR 556894 (81a:03050)
  • [3] J. Baumgartner, private letter to the author, 11 November 1988.
  • [4] M. Bell, On the combinatorial principle $ P\left( c \right)$, Fund. Math. 114 (1981), 149-157. MR 643555 (83e:03077)
  • [5] M. Bell and K. Kunen, On the PI character of ultrafilters, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), 351-356. MR 642449 (82m:03064)
  • [6] A. Blass and S. Shelah, There may be simple $ {P_{{\aleph _1}}}$ and $ {P_{{\aleph _2}}}$ points and the Rudin-Keisler order may be downward directed, Ann. Pure Appl. Logic 33 (1987), 213-243. MR 879489 (88e:03073)
  • [7] D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970-1), 1-24. MR 0277371 (43:3104)
  • [8] R. M. Canjar, Countable ultraproducts without CH, Ann. Pure Appl. Logic 37 (1988), 1-79. MR 924678 (89g:03073)
  • [9] -, Small-filter forcing, J. Symbolic Logic 51 (1986), 526-546. MR 853837 (87m:03068)
  • [10] C. C. Chang and H. J. Keisler, Model theory, North-Holland, 1973.
  • [11] J. Ketonen, On the existence of $ P$-points, Fund. Math. 92 (1976), 91-99. MR 0433387 (55:6363)
  • [12] K. Kunen, Some points in $ \beta N$; Proc. Cambridge Philos. Soc. 78 (1980), 385-398. MR 0427070 (55:106)
  • [13] A. Mathias, Remarks on rare filters, Infinite and Finite Sets, Colloq. Math. Soc. János Bolya, North-Holland, Amsterdam, 1975. MR 0373898 (51:10098)
  • [14] A. Miller, There are no $ Q$-Points in Laver's model for the Borel conjecture, Proc. Amer. Math. Soc. 78 (1980), 103-106. MR 548093 (80h:03071)
  • [15] -, A characterization of the least cardinal for which the Baire category theorem fails, Proc. Amer. Math. Soc. 86 (1982), 498-502. MR 671224 (84b:04002)
  • [16] P. J. Nyikos and D. H. Fremlin, Saturating ultrafilters on N, J. Symbolic Logic 54 (1989), 708-718. MR 1011162 (90i:03050)
  • [17] J. Roitman, Non-isomorphic $ H$-fields from non-isomorophic ultrapowers, Math. Z. 181 (1982), 93-96.
  • [18] S. Shelah, Proper forcing, Lecture Notes in Math., vol. 940, Springer-Verlag, 1982, pp. 213-221. MR 675955 (84h:03002)
  • [19] J. Steprans, Cardinal Arithmetic and $ \aleph $-Borel sets, Proc. Amer. Math. Soc. 84 (1982), 121-126. MR 633292 (83g:03052)
  • [20] A. Taylor, On the existence of $ P$-points and $ Q$-points, preprint.
  • [21] E. van Douwen, The integers and topology, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, 1984. MR 776622 (87f:54008)
  • [22] W. Weiss, Versions of Martin's axiom, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, 1984. MR 776638 (86h:03088)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E05, 03E65, 04A20, 54A25

Retrieve articles in all journals with MSC: 03E05, 03E65, 04A20, 54A25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-0993747-3
PII: S 0002-9939(1990)0993747-3
Article copyright: © Copyright 1990 American Mathematical Society