Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Complemented subspaces of products of Hilbert spaces

Author: Paweł Domański
Journal: Proc. Amer. Math. Soc. 110 (1990), 187-196
MSC: Primary 46A05; Secondary 46C99
MathSciNet review: 1000152
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that every complemented subspace of an arbitrary topological product of (nonnecessarily separable) Hilbert spaces is isomorphic to a product of Hilbert spaces.

A counterexample is given showing that this result cannot be proved by the same direct method as for countable products.

References [Enhancements On Off] (What's this?)

  • [1] S. Bellenot and E. Dubinsky, Frèchet spaces with nuclear Köthe quotients, Trans. Amer. Math. Soc. 273 (1982), 579-594. MR 667161 (84g:46002)
  • [2] S. Dierolf and D. N. Zarnadze, A note on strictly regular Frèchet spaces, Arch. Math. 42 (1984), 549-556. MR 756897 (86c:46002)
  • [3] P. Domański and A. Ortyński, Complemented subspaces of products of Banach spaces, Trans. Amer. Math. Soc. 316 (1989), 215-231. MR 937243 (90b:46004)
  • [4] N. Dunford and J. T. Schwartz, Linear operators, vol. I, Interscience Publ, New York, 1958. MR 0117523 (22:8302)
  • [5] H. Jarchow, Locally convex spaces, B. G. Teubner, Stuttgart, 1981. MR 632257 (83h:46008)
  • [6] G. Metafune and V. B. Moscatelli, Complemented subspaces of products and direct sums of Banach spaces, Ann. Mat. Pura. Appl. (4) 153 (1988), 175-190. MR 1008343 (90j:46003)
  • [7] A. Pietsch, Operator ideals, DVW, Berlin, 1978. MR 519680 (81a:47002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A05, 46C99

Retrieve articles in all journals with MSC: 46A05, 46C99

Additional Information

Keywords: Complemented subspaces, Hilbert spaces, topological products of Hilbert spaces, locally convex spaces
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society