Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A characterization of ellipsoids and balls in $ {\bf C}\sp n$


Author: Ewa Ligocka
Journal: Proc. Amer. Math. Soc. 110 (1990), 103-107
MSC: Primary 32F15; Secondary 32H10, 46E99, 46J15
MathSciNet review: 1000159
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The following fact is proved: If $ D$ is a smooth bounded domain in $ {{\mathbf{C}}^n}$ for which Bergman and Szegö projections are equal on smooth harmonic functions then $ D$ is a ball.


References [Enhancements On Off] (What's this?)

  • [1] D. Barret, Irregularity of the Bergman projection on a smooth bounded domain in $ {C^2}$, Ann. of Math. 119 (1984), 431-436. MR 740899 (85e:32030)
  • [2] S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128. MR 646379 (83m:31005)
  • [3] E. Ligocka, The Bergman projection on harmonic functions, Studia Math. 85 (1987), 229-246. MR 887486 (89a:32024)
  • [4] R. Molzon, Integral identities and symmetry, preprint.
  • [5] W. Rudin, Function theory in the unit ball in $ {{\mathbf{C}}^n}$, Springer-Verlag, Berlin, 1980. MR 601594 (82i:32002)
  • [6] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304-318. MR 0333220 (48:11545)
  • [7] H. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal. 43 (1971), 319-320. MR 0333221 (48:11546)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32F15, 32H10, 46E99, 46J15

Retrieve articles in all journals with MSC: 32F15, 32H10, 46E99, 46J15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1000159-5
PII: S 0002-9939(1990)1000159-5
Article copyright: © Copyright 1990 American Mathematical Society