A class of shifts on the hyperfinite factor

Authors:
Donald Bures and Hong Sheng Yin

Journal:
Proc. Amer. Math. Soc. **110** (1990), 169-175

MSC:
Primary 46L35

MathSciNet review:
1013966

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct and classify up to conjugacy certain shifts on the hyperfinite -factor, each being a shift of Jones index which fails to be an -shift. In particular for each prime we construct uncountably many such shifts.

**[1]**Arlen Brown and P. R. Halmos,*Algebraic properties of Toeplitz operators*, J. Reine Angew. Math.**213**(1963/1964), 89–102. MR**0160136****[2]**Donald Bures and Hong Sheng Yin,*Shifts on the hyperfinite factor of type 𝐼𝐼₁*, J. Operator Theory**20**(1988), no. 1, 91–106. MR**972183****[3]**-,*Outer conjugacy of shifts on the hyperfinite**-factor*, Pacific J. Math.**141**(1990).**[4]**Marie Choda,*Shifts on the hyperfinite 𝐼𝐼₁-factor*, J. Operator Theory**17**(1987), no. 2, 223–235. MR**887220****[5]**M. Choda, M. Enomoto, and Y. Watatani,*Uncountably many non-binary shifts on the hyperfinite**-factor*, preprint.**[6]**M. Enomoto and Y. Watatani,*A solution of Powers' problem on outer conjugacy of binary shifts*, preprint.**[7]**V. F. R. Jones,*Index for subfactors*, Invent. Math.**72**(1983), no. 1, 1–25. MR**696688**, 10.1007/BF01389127**[8]**Robert T. Powers,*An index theory for semigroups of *-endomorphisms of ℬ(ℋ) and type ℐℐ₁ factors*, Canad. J. Math.**40**(1988), no. 1, 86–114. MR**928215**, 10.4153/CJM-1988-004-3**[9]**Geoffrey L. Price,*Shifts on type 𝐼𝐼₁ factors*, Canad. J. Math.**39**(1987), no. 2, 492–511. MR**899846**, 10.4153/CJM-1987-021-2**[10]**Geoffrey L. Price,*Shifts of integer index on the hyperfinite 𝐼𝐼₁ factor*, Pacific J. Math.**132**(1988), no. 2, 379–390. MR**934178**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46L35

Retrieve articles in all journals with MSC: 46L35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1013966-X

Article copyright:
© Copyright 1990
American Mathematical Society