An infinite-dimensional extension of theorems of Hartman and Wintner on monotone positive solutions of ordinary differential equations

Author:
A. F. Izé

Journal:
Proc. Amer. Math. Soc. **110** (1990), 77-84

MSC:
Primary 34G20; Secondary 34C35, 58D25

DOI:
https://doi.org/10.1090/S0002-9939-1990-1015679-7

MathSciNet review:
1015679

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the equation (1) , a Banach sequence space with a Schauder Basis. It is proved that if is a positive operator and the solution operator is compact for , then system (1) has at least one solution such that , and consequently are monotone nonincreasing for .

**[1]**Klaus Deimling,*Ordinary differential equations in Banach spaces*, Lecture Notes in Mathematics, Vol. 596, Springer-Verlag, Berlin-New York, 1977. MR**0463601****[2]**Philip Hartman and Aurel Wintner,*Linear differential and difference equations with monotone solutions*, Amer. J. Math.**75**(1953), 731–743. MR**0057404**, https://doi.org/10.2307/2372548**[3]**-,*On monotone solutions of systems of nonlinear differential equations*, Amer. J. Math. (1954), 860-866.**[4]**Daniel Henry,*Geometric theory of semilinear parabolic equations*, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR**610244****[5]**A. F. Izé,*On a fixed point index method for the analysis of the asymptotic behavior and boundary value problems of infinite-dimensional dynamical systems and processes*, J. Differential Equations**52**(1984), no. 2, 162–174. MR**741266**, https://doi.org/10.1016/0022-0396(84)90175-X**[6]**Joram Lindenstrauss and Lior Tzafriri,*Classical Banach spaces. I*, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR**0500056****[7]**Tosio Kato,*Quasi-linear equations of evolution, with applications to partial differential equations*, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Springer, Berlin, 1975, pp. 25–70. Lecture Notes in Math., Vol. 448. MR**0407477****[8]**M. A. Krasnosel′skiĭ,*Positive solutions of operator equations*, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, P. Noordhoff Ltd. Groningen, 1964. MR**0181881**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34G20,
34C35,
58D25

Retrieve articles in all journals with MSC: 34G20, 34C35, 58D25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1015679-7

Keywords:
Differential equations,
Banach spaces,
infinite dimensional spaces,
positive solutions,
operator equations,
strongly positive,
solid cone,
egress points,
strict egress points,
trajectory,
orbit,
consequent operator,
left shadow,
process,
retract,
infinitesimal generator,
classical solution

Article copyright:
© Copyright 1990
American Mathematical Society