Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On the topology of the space of convolution operators in $ K'\sb M$


Author: Saleh Abdullah
Journal: Proc. Amer. Math. Soc. 110 (1990), 177-185
MSC: Primary 46F05; Secondary 46F10
MathSciNet review: 1017842
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that on the space $ {O'_c}\left( {{{K'}_M}:{{K'}_M}} \right)$ of convolution operators on $ {K'_M}$, the topology $ {\tau _b}$ of uniform convergence on bounded subsets of $ {K_M}$ is equal to the strong dual topology.


References [Enhancements On Off] (What's this?)

  • [1] S. Abdullah, On distributions of rapid growth, Portugal. Math. (to appear). MR 1090070 (92e:46076)
  • [2] -, On the spaces of convolution operators and multipliers in $ {K'_M}$, J. Univ. Kuwait Sci. 15 (1988), 219-228. MR 974040 (89m:46075)
  • [3] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973. MR 0365062 (51:1315)
  • [4] G. Sampson and Z. Zielezny, Hypoelliptic convolution equations in $ {K'_p},p > 1$, Trans. Amer. Math. Soc. 223 (1976), 133-154. MR 0425607 (54:13561)
  • [5] H. Schaefer, Topological vector spaces, Springer-Verlag, Graduate Texts in Mathematics, No. 3, 4th ed., New York, 1980. MR 0342978 (49:7722)
  • [6] Z. Zielezny, On the space of convolution operators in $ {K'_1}$, Studia Math. 31 (1968), 111-124. MR 0248520 (40:1772)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46F05, 46F10

Retrieve articles in all journals with MSC: 46F05, 46F10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1017842-8
PII: S 0002-9939(1990)1017842-8
Article copyright: © Copyright 1990 American Mathematical Society