Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On almost Einstein holomorphic vector bundles over Hermitian surfaces


Author: Novica Blažić
Journal: Proc. Amer. Math. Soc. 110 (1990), 201-209
MSC: Primary 53C25; Secondary 32L05, 53C55, 57R20
MathSciNet review: 1023350
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study holomorphic vector bundles $ \left( {E,h} \right)$ of rank 2 over a compact Hermitian surface $ \left( {M,g} \right)$. Then the notion of a metric with a $ k$-pinched Ricci curvature is introduced and it represents the generalization of the Einstein condition. Some necessary topological conditions for existence of a metric $ h$ with $ k$-pinched $ \left( {0 \leq k \leq 1} \right)$ Ricci curvature are obtained.


References [Enhancements On Off] (What's this?)

  • [1] M. Berger, Sur les variétés d'Einstein compactes, C. R. IIIe Reunion Math. Expression latine, Namur (1965), 35-55. MR 0238226 (38:6502)
  • [2] A. Besse, Seminaire Arthur Besse 1978/79, Cedic/Fernand Nathan, Paris, 1981. MR 769127 (86i:53020)
  • [3] N. Blažić, Chern classes of complex vector bundles over almost complex manifolds, Boll. Un. Mat. Ital. B 7 (1989). MR 1032619 (91e:53033)
  • [4] B.-Y. Chen and K. Ogiue, Some characterizations of complex space forms in terms of Chern classes, Quart. J. Math. Oxford 26 (1975), 459-464. MR 0405303 (53:9097)
  • [5] P. Gauduchon, La topologie d'une surface hermitienne d'Einstein, C. R. Acad. Sci. Paris Sér. A 290 (1980), 509-512. MR 571563 (81e:53052)
  • [6] P. Gilkey, The index theorem and the heat equation, Publish or Perish, 1974. MR 0458504 (56:16704)
  • [7] A. Gray, M. Baros, A. Naveira, and L. Vanhecke, The Chern numbers of holomorphic vector bundles and formally holomorphic connections of complex vector bundles over almost complex manifolds, J. Reine Angew. Math. 8 (1980), 84-98. MR 555906 (80m:32010)
  • [8] S. Kobayashi, Differential geometry of complex vector bundles, Princeton University Press, Princeton, 1987. MR 909698 (89e:53100)
  • [9] -, Curvature and stability of vector bundles, Proc. Japan Acad. Ser. A 58 (1982), 158-162. MR 664562 (83i:53090)
  • [10] M. Lübke, Chernklassen von Hermite-Einstein-vectorbündeln, Math. Ann. 260 (1982), 133-141. MR 664372 (83m:32031)
  • [11] A. Polombo, Nombres caracteristiques d'une variete Riemannienne de dimension 4, J. Differential Geom. 13 (1978), 145-162. MR 520607 (80h:57032)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C25, 32L05, 53C55, 57R20

Retrieve articles in all journals with MSC: 53C25, 32L05, 53C55, 57R20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1023350-0
PII: S 0002-9939(1990)1023350-0
Keywords: Holomorphic vector bundle, Ricci curvature, Chern numbers
Article copyright: © Copyright 1990 American Mathematical Society