DEDEKIND DOMAINS AND GRADED RINGS

FABIEN DECRUYENAERE AND ERIC JESPERS

Abstract. We prove that a Dedekind domain R, graded by a nontrivial torsionfree abelian group, is either a twisted group ring $k'[G]$ or a polynomial ring $k[X]$, where k is a field and G is an abelian torsionfree rank one group. It follows that R is a Dedekind domain if and only if R is a principal ideal domain. We also investigate the case when R is graded by an arbitrary nontrivial torsionfree monoid.

We fix some notation and terminology. All rings R are commutative with identity 1, and all semigroups S are torsionfree. In case S is a monoid, we denote by e the identity of S and by $\mathcal{U}(S)$ the group of invertible elements of S. For $s \in S$, denote by (s) (respectively $(s)^1$) the subsemigroup (respectively submonoid) of S generated by s. For more details on semigroups we refer to [3]. We say that R is S-graded if $R = \bigoplus_{s \in S} R_s$, a direct sum of additive subgroups, such that $R_s R_t \subseteq R_{st}$, for all $s, t \in S$. The set $h(R) = \bigcup_{s \in S} R_s$ is the set of all homogeneous elements. If T is a subset of S, then we put $R_{[T]} = \bigoplus_{t \in T} R_t$. Clearly, if $\text{Supp}(R) = \{s \in S | R_s \neq 0\}$, the support of R, then $R = R_{[\text{Supp}(R)]}$. Obviously $\text{Supp}(R)$ is a monoid if R is a domain. If, moreover, S is a group and $R_s R_t = R_{st}$ for all $s, t \in S$, then R is called strongly S-graded. If I is an ideal of R, we denote by $(I)_h$ the ideal generated by all homogeneous elements of I. If $I = (I)_h$, then I is called a homogeneous ideal of R.

If S is a monoid and R is an S-graded integral domain, then $Q^G(R) = \{rc^{-1} | r \in R, c \in S, s \in S\}$, the graded quotient ring of R; if moreover, S is cancellative, then $Q^G(R)$ is G-graded, where G is the quotient group of S, and its component of degree e is clearly a field. For further details on graded rings we refer to [6].

In recent years there has been a growing interest in divisibility properties of graded rings. For example, in [1, 7] graded rings which are factorial domains are investigated, while in [1, 2] graded rings that are Krull domains are studied. In this paper we investigate graded rings which are Dedekind domains.
We begin with two elementary lemmas.

Lemma 1. Let G be a torsionfree abelian group, R a G-graded ring and $S = \text{Supp}(R)$. If R is a Dedekind domain, then S is either a group or a torsionfree cancellative monoid with $\mathcal{Z}(S) = \{e\}$.

Proof. Since R is a domain and $1 \in R$, S is clearly a submonoid of G. Suppose $S \neq \mathcal{Z}(S)$. Since $T = S \setminus \mathcal{Z}(S)$ is an ideal of S, it follows that $R[T]$ is an ideal of R; and obviously $R/R[T] \cong R_{\mathcal{Z}(S)}$. Hence $R[T]$ is a nonzero prime ideal, and thus a maximal ideal of R. Therefore $R_{\mathcal{Z}(S)}$ is a field. Since $\mathcal{Z}(S)$ is a totally ordered group, it follows, using well-known techniques, that $\mathcal{Z}(S) = \{e\}$. This finishes the proof. □

Lemma 2. Assume S is a nontrivial torsionfree cancellative monoid and R is an S-graded Dedekind domain. If $S = \text{Supp}(\mathcal{A})$, then the quotient group $\langle S \rangle$ of S has torsionfree rank 1.

Proof. Let $Q = Q^S(R)$, the graded quotient ring of R. Note that Q is also a Dedekind domain. Since Q is $\langle S \rangle$-graded and because Q_e is a field, it is well known that Q is a twisted group ring $Q_e[G]$ of a group G over Q_e. Moreover, $S = \text{Supp}(R)$ yields $G = \langle S \rangle$. Let F be a maximal free subgroup of G, then G/F is a torsion group. Therefore, Q is integral over $Q_e[F]$ and since $\dim(Q) = 1$ (note that S is nontrivial) we obtain that $\dim(Q_e[F]) = 1$. Now $Q_e[F]$ is isomorphic with a Laurent polynomial ring over the field Q_e in rank(F) variables. It follows that rank(F) = 1. The result follows. □

We consider the two cases mentioned in Lemma 1 separately. First we assume $\mathcal{Z}(S) = \{e\}$.

Proposition 3. Let R be an S-graded ring, where $S = \text{Supp}(R)$ is a nontrivial torsionfree cancellative monoid with $\mathcal{Z}(S) = \{e\}$. Then R is a Dedekind domain if and only if $R \cong k[X]$, a polynomial ring over a field k.

Proof. Let $T = S \setminus \{e\}$. Then T is a nontrivial ideal of S. As in Lemma 1, it follows that $R[T]$ is a maximal ideal of R. Hence $R_e \cong R/R[T]$ is a field.

We first consider the case that $S = \mathbb{N}$, the nonnegative integers. Put $M = R_{[N_0]} = \bigoplus_{n > 0} R_n$, the unique maximal homogeneous ideal of R. Therefore, the ideal generated by R_1 is equal to M^n for some $n \geq 1$. But then $n = 1$, and hence $R_m = R_1 R_{m-1} = R_1^n$, for every $m \geq 1$. Consequently $R = R_0 \oplus \sum_{n \geq 1} R_1^n$. Let $0 \neq r_1 \in R_1$; then Rr_1 is a nonzero homogeneous ideal and thus $Rr_1 = M$. Hence $R_1 = R_0 r_1$ and for each $n \geq 1$, $R_n = R_0 r_1^n$. So $R = \bigoplus_{n \in \mathbb{N}} R_0 r_1^n$, a polynomial ring in r_1 over R_0.

We now consider the general case. Let $s \in S$, $s \neq e$, then $\langle s \rangle^1 \cong \mathbb{N}$. Because of Lemma 2, $G = \langle S \rangle$ has torsionfree rank one. Let $\text{grp}(s)$ be the cyclic subgroup of G generated by s, and let $\overline{G} = G/\text{grp}(s)$. It follows that R is also a \overline{G}-graded ring with identity component $R_{\langle s \rangle^1}$. The latter follows from the fact that $\mathcal{Z}(S) = \{e\}$. It then follows from [1] that $R_{\langle s \rangle^1}$ is a Krull domain.
Now since G is a torsion group and because $\mathbb{Z}(S) = \{ e \}$, we obtain that for every $e \neq t \in S$, there exist $n, m \in \mathbb{N}_0$ such that $t^n = s^m$. Consequently, R is integral over $R_{(s)^1}$ and, therefore, the latter ring is of dimension 1. Hence $R_{(s)^1}$ is a Dedekind domain. It follows from the first case that $R_s = R_0 r_s$, $0 \neq r_s \in R_s$. Therefore, $R = R_0 [S]$, a twisted monoid ring. We now prove that $S \cong \mathbb{N}$; this will finish the proof. Since S is torsionfree cancellative and has no nontrivial invertible elements, there exists a linear order $<$ on S such that all elements of S are positive. We assert that $S \setminus \{ e \}$ has a minimum element for this order. For if not, then S has an infinite descending chain

$$s_1 > s_2 > s_3 > \cdots > s_n > \cdots > e.$$

But then one obtains the following infinite strictly ascending chain of ideals in R:

$$\sum_{s \geq s_1} R_s \subset \sum_{s \geq s_2} R_s \subset \cdots \subset \sum_{s \geq s_n} R_s \subset \cdots;$$

a contradiction. Let s_1 be the minimum element in $S \setminus \{ e \}$. So $M = \sum_{s \geq s_1} R_s$ is the unique maximal homogeneous ideal of R and $RR_{s_1} = M$. Consequently, for every $s \in S \setminus \{ e \}$, $R_s \subset RR_{s_1}$ and thus $ss_1^{-1} \in S$. If $s_1^n < s < s_1^{n+1}$, $n \geq 1$, then $1 < ss_1^{-n} < s_1$, a contradiction since $ss_1^{-n} \in S$. Therefore,

$$e < s_1 < s_1^2 < \cdots < s_1^n < \cdots$$

is a strictly ascending chain of elements of S which cannot be refined in S. Suppose there exists $t \in S$ such that $t > s_1^n$ for all $n \in \mathbb{N}$. Then by an argument as above, such a minimal element t exists. But then $ts_1^{-1} < t$ and, for every $n \in \mathbb{N}$, $ts_1^{-1} > s_1^n$; a contradiction. Hence $S = \langle s_1 \rangle \cong \mathbb{N}$. \hfill \square

Proposition 4. Let R be a G-graded ring, where $G = \text{Supp}(R)$ is a nontrivial torsionfree abelian group. If R is a Dedekind domain, then $R = k'[G]$, a twisted group ring over a field k, and G has torsionfree rank one.

Proof. It follows from Lemma 2 that G is of rank one. Hence to prove the result, it is sufficient to show that R_e is a field, or equivalently that R has no nonzero homogeneous prime ideals. So we assume R_e is not a field and derive a contradiction.

Let P be a nonzero homogeneous prime ideal. Then R/P is a field and a G-graded ring. Therefore R/P is trivially graded, and thus $P = p + \sum_{g \in G \setminus \{ e \}} R_g$ where p is a maximal ideal of R_e. Write $P = P(p)$. Conversely, let p be a nonzero prime ideal of R_e. Then Rp is an ideal of R such that $Rp \cap R_e = p$. Let M be a homogeneous ideal of R maximal with respect to $M \cap R_e = p$. One easily verifies that M is a prime ideal of R, and thus by the previous $M = P(p)$. Now fix a nonzero prime ideal p in R_e. Let T be the ring R localized to the multiplicative set $R_e \setminus p$. Then T is also a G-graded Dedekind domain, and by the above T has only one nonzero homogeneous prime ideal, namely $P(p)$ localized to $R_e \setminus p$. We may assume $T = R$.

So let \(R \) be a \(G \)-graded Dedekind domain with unique nonzero homogeneous prime ideal \(P = P(p) = p + \sum_{g \in G \setminus \{e\}} R_g \). It follows that for every \(0 \neq x \in P \cap h(R) \) there exists \(n(x) \geq 0 \) such that \(Rx = P^{n(x)} \). Since \(P = \sum_{x \in P \cap h(R)} Rx \), we obtain that \(P = Rx_g \) for some \(x_g \in R_g, \ g \in G \). Assume \(g \neq e \). Then \(R_g = R_{x_g} \) and thus \(RR_g = Rx_g = P \). Therefore, for every \(h \in G \setminus \{e\} \), \(R_h = R_g R_{g^{-1}h} \) and \(p = R_g R_{g^{-1}} \). Consequently, \(P^k \supseteq p + \sum_{n>0} R_{g^{-n}} \), for all \(k \geq 1 \); a contradiction as \(p \neq 0 \). Therefore, \(g = e \). In this case it follows that \(p = R_e x_e \) and \(R_g = R_g x_e \) for \(g \neq e \). We obtain \(RR_g = RR_g Rx_e \). This yields \(R = Rx_e \) and thus \(p = R_e \), a contradiction. This finishes the proof. \(\square \)

Corollary 5. Let \(R \) be a \(G \)-graded ring, where \(G \) is a torsionfree abelian group with the ascending chain condition on cyclic subgroups; and assume \(|\text{Supp}(R)| > 1 \). Then, \(R \) is a Dedekind domain if and only if \(R \cong k[X] \) or \(R \cong k[X, X^{-1}] \) for some field \(k \).

Proof. Since a torsionfree rank one abelian group with the ascending chain condition on cyclic subgroups is free \([4]\), the result follows from Lemmas 1 and 2 and Propositions 3 and 4. \(\square \)

Remark. Obviously, the condition in Proposition 4 is not sufficient, as, for example, a group algebra over an infinitely generated rank one group is not Noetherian.

Also, \(G \) does not need to have the ascending chain condition on cyclic subgroups. The following example is taken from \([2]\). Let \(G \) be an arbitrary torsionfree rank one abelian group and \(R = k[X_g | g \in G] \), a polynomial ring over the field \(k \). Obviously \(R \) is a unique factorization domain and is \(G \)-graded with \(\deg(X_{g_1} \cdots X_{g_r}) = g_1^{n_1} \cdots g_r^{n_r} \). Clearly \(Q = Q^G(R) = Q^G_e[G] \) is also a unique factorization domain. Moreover, \(Q \cong Q_e[Z][G/Z] \) is integral over \(Q_e[Z] \); so all nonzero prime ideals of \(Q \) are maximal. Therefore, \(Q \) is a Dedekind domain.

We obtain the following generalization of a result of Gilmer \([5, \text{Theorem 13.8}]\).

Corollary 6. Let \(S \) be a torsionfree cancellative monoid. Assume \(R \) is an \(S \)-graded ring with \(|\text{Supp}(R)| > 1 \). The following conditions are equivalent.

1. \(R \) is a Dedekind domain.
2. \(R \) is principal ideal domain.

In these cases, \(R \cong k^i[G] \), where \(G \) is a torsionfree rank one group, or \(R \cong k[X] \) with \(k \) a field.

Proof. We only need to observe that, when \(R \cong k^i[G] \cong [Z]^{G/Z} \) (\(G \) of rank 1) and \(R \) is a Dedekind domain, then \(R \) is a principal ideal domain. For this, let \(P \) be a prime ideal of \(R \). Then \(P = R r_1 + \cdots + R r_n \) for some \(r_i \in R \). Clearly there exists a finitely generated subgroup \(H \) of \(G \) such that \(r_i \in R_{\{H\}} \) for all \(1 \leq i \leq n \). Since \(G \) is torsionfree of rank one, it follows that \(H \cong \mathbb{Z} \), \(R_{\{H\}} \cong k[X, X^{-1}] \) and therefore \(P \cap R_{\{H\}} = R_{\{H\}} r \) for some \(r \in R_{\{H\}} \). Hence \(P = Rr \). The result follows. \(\square \)
We now consider rings graded by noncancellative monoids.

Proposition 7. Let R be an S-graded ring, where $S = \text{Supp}(R)$ is a nontrivial torsionfree noncancellative monoid. If R is a Dedekind domain, then $|\text{Supp}(R)| = 2$ and $R = k + M$, where k is a field and M is a maximal ideal of R.

Proof. Since S is torsionfree, $S = \bigcup_{\alpha \in \Gamma} S_\alpha$, the disjoint union of its cancellative Archimedean subsemigroups, with Γ a semilattice. By \leq we denote the partial order relation on Γ, that is $\alpha \leq \beta$ if $\alpha \beta = \alpha$. As S is noncancellative, $|\Gamma| > 1$ and since S is a monoid, Γ has a maximum element, say δ, with $e \in S_\delta$. Moreover, $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$, a semilattice graded ring, where for every $\alpha \in \Gamma$, $R_\alpha = \bigoplus_{\gamma \in S_\alpha} R_\gamma$. Put $R' = \bigoplus_{\alpha \neq \delta} R_\alpha$, then R' is a nonzero prime, and thus a maximal ideal of R. Hence R_δ is a field.

Let $e' \neq \delta$ and $P_\alpha = \bigoplus_{\beta \geq \alpha} R_\beta$, where the sum runs over all β that are either incomparable with α or $\beta < \alpha$. Then P_α is an ideal of R and $R/P_\alpha = \bigoplus_{\beta \geq \alpha} R_\beta \neq 0$ is a domain. So P_α is a maximal ideal in R or $P_\alpha = \{0\}$. But in the first case $\bigoplus_{\beta \geq \alpha} R_\beta$ would be a field, which is impossible as each element of $R_\alpha \subseteq R'$ is not invertible. Hence for every $\alpha \neq \delta$, $P_\alpha = \{0\}$, that is $\{\beta \in \Gamma : \beta \leq \alpha \text{ or } \beta \text{ incomparable with } \alpha\} = \emptyset$. Therefore $\Gamma = \{\delta, \alpha\}$, $\alpha \neq \delta$ and $\alpha \delta = \alpha$; $R = R_\delta \oplus R_\alpha$ and $S = S_\delta \cup S_\alpha$. Now if $S_\delta \neq \{e\}$, then S_δ is a nontrivial torsionfree abelian group and R_δ is a field graded by S_δ, which is impossible. So $S = \{e\} \cup S_\alpha$. Now since S is not cancellative there exist $s \in S_\alpha$ and $t, t' \in S$ such that $st = st'$ and $t \neq t'$. But as S_α itself is cancellative we obtain that, say, $t = e$ and thus $t' \in S_\alpha$. This yields that t' is an idempotent, and consequently, $S_\alpha = G$ is a group.

Let 1_G be the identity of G. We claim that $G = \{1_G\}$. For if not, then $R = (R_e + R_{1_G}) \oplus \sum_{g \in G \setminus \{e\}} R_g$ is a Dedekind domain graded by the nontrivial torsionfree group G (the identity component being $R_e + R_{1_G}$). Lemma 4 implies that $R_e + R_{1_G}$ is a field. A contradiction as R_{1_G} is a nonzero ideal of the latter ring. This proves the claim; and therefore $R = R_e + R_{1_G}$. This finishes the proof. \[\square\]

Note that there are plenty of Dedekind domains of the type $R = k + M$. For example polynomial rings $k[X]$ or power series $k[[X]]$ where k is a field, or $\mathbb{R}[X, Y]/(X^2 + Y^2 - 1)$. In case R is a principal ideal domain we can prove that R is embedded in a formal power series ring and contains a polynomial ring.

Corollary 8. With the notations and assumptions as in Proposition 7. If, moreover, R is a principal ideal domain and $M = RX$, $X \in R$, then $k[X] \subseteq R = k + M \subseteq k[[X]].$

Proof. Let $R_e = k$, a field, then $R = k + RX$. It follows that $R = k + kX + kX^2 + \cdots + kX^n + RX^n$. Thus for every $r \in R$, and $n \geq 0$, there exist
r_0, r_1, \ldots, r_n \in k \text{ and } b_n \in RX \text{ such that } r = r_0 + r_1X + \cdots + r_nX^n + b_nX^n.

One easily verifies that the r_i's are uniquely determined by r. Hence we obtain a well-defined map

\[\varphi : R \to k[[X]] : r \mapsto r_0 + r_1X + \cdots + r_nX^n + \cdots. \]

It follows that \(\varphi \) is a ring homomorphism. Moreover, since \(\bigcap_{n \in \mathbb{N}} RX^n = \{0\} \), \(\varphi \) is a monomorphism. This proves the result. \(\square \)

Of course not every principal ideal domain \(R \) is of the form \(k + M \). Let \(R = R[\frac{1}{X}] = R[X, X+X], \) that is the localization of \(R[X] \) with respect to the prime ideal generated by \(X^2 + X + 1 \). Clearly \(R \) is a principal ideal domain, and it is easily verified that \(R \) is not of the form \(k + M \) for some field \(k \) and nonzero ideal \(M \).

References

Department of Mathematics, K. U. Leuven, 3030 Leuven, Belgium

Department of Mathematics, Memorial University of Newfoundland, St. John's, A1C 5S7 Canada