Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On left derivations and related mappings


Authors: M. Brešar and J. Vukman
Journal: Proc. Amer. Math. Soc. 110 (1990), 7-16
MSC: Primary 16W25; Secondary 16U80, 16W10, 16W80, 46H05
MathSciNet review: 1028284
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a ring and $ X$ be a left $ R$-module. The purpose of this paper is to investigate additive mappings $ {D_1}:R \to X$ and $ {D_2}:R \to X$ that satisfy $ {D_1}(ab) = a{D_1}(b) + b{D_1}(a),a,b \in R$ (left derivation) and $ {D_2}({a^2}) = 2a{D_2}(a),a \in R$ (Jordan left derivation). We show, by the rather weak assumptions, that the existence of a nonzero Jordan left derivation of $ R$ into $ X$ implies $ R$ is commutative. This result is used to prove two noncommutative extensions of the classical Singer-Wermer theorem.


References [Enhancements On Off] (What's this?)

  • [1] H. E. Bell and W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), 92-101. MR 879877 (88h:16044)
  • [2] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, 1973. MR 0423029 (54:11013)
  • [3] M. Brešar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-322. MR 943433 (89f:16049)
  • [4] -, On some additive mappings in rings with involution, Aequationes Math. 38 (1989), 178-185. MR 1018911 (90j:16076)
  • [5] H. G. Dales, Automatic continuity, Bull London Math. Soc. 10 (1978), 129-183. MR 500923 (80c:46053)
  • [6] I. N. Herstein, Jordan derivations on prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110. MR 0095864 (20:2362)
  • [7] B. E. Johnson, Continuity of derivations on commutative Banach algebras, Amer. J. Math. 91 (1969), 1-10. MR 0246127 (39:7433)
  • [8] S. Kurepa, The Cauchy functional equation and scalar product in vector spaces, Glas. Mat.-Fiz. Astr. 19 (1964), 23-36. MR 0171100 (30:1331)
  • [9] J. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1976), 113-115. MR 0419499 (54:7520)
  • [10] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. MR 0095863 (20:2361)
  • [11] A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170. MR 0233207 (38:1530)
  • [12] -, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214. MR 0250069 (40:3310)
  • [13] -, Automatic continuity of linear operators, London Math. Soc. Lecture Note Ser. 21, Cambridge University Press, Cambridge, London, New York, and Melbourne, 1976. MR 0487371 (58:7011)
  • [14] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264. MR 0070061 (16:1125c)
  • [15] B. Yood, Continuous homomorphisms and derivations on Banach algebras, Contemp. Math., 32, Amer. Math. Soc., Providence, RI, 1984, pp. 279-284. MR 769517 (86b:46074)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16W25, 16U80, 16W10, 16W80, 46H05

Retrieve articles in all journals with MSC: 16W25, 16U80, 16W10, 16W80, 46H05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1028284-3
PII: S 0002-9939(1990)1028284-3
Keywords: Derivation, Jordan derivation, left derivation, Jordan left derivation, prime ring, semiprime ring, Banach algebra
Article copyright: © Copyright 1990 American Mathematical Society