On linear groups over finite fields

Author:
Ji Ping Zhang

Journal:
Proc. Amer. Math. Soc. **110** (1990), 53-57

MSC:
Primary 20C20

DOI:
https://doi.org/10.1090/S0002-9939-1990-1028297-1

MathSciNet review:
1028297

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite group with an Abelian Sylow -subgroup , and , a finite field of characteristic . Set . If has a faithful *FG*-module such that , then one of the following is true:

(a) is normal in ,

(b) , where and are positive integers and ,

(c) and or , respectively, .

**[1]**R. Brauer,*On groups whose orders contain a prime to the first power*, I, II, Amer. J. Math.**64**(1942), 401-440. MR**0006537 (4:1e)****[2]**-,*Representations of finite groups*, Lectures on Modern Mathematics I, Wiley, 1963. MR**0178056 (31:2314)****[3]**R. Brauer and H. F. Tuan,*On simple groups of finite order*, Bull. Amer. Math. Soc.**51**(1945), 756-766. MR**0015102 (7:371d)****[4]**H. F. Tuan,*On groups whose orders contain a prime to the first power*, Ann. of Math.**45**(1944), 110-140. MR**0009397 (5:143f)****[5]**W. Feit,*Groups with a cyclic Sylow**-subgroup*, Nagoya Math. J.**27**(1966), 571-584. MR**0199255 (33:7404)****[6]**-,*On finite linear groups*, J. Algebra**5**(1967), 378-400. MR**0207818 (34:7632)****[7]**-,*The representation theory of finite groups*, North-Holland, Amsterdam, 1982. MR**661045 (83g:20001)****[8]**J. P. Zhang,*Complex linear groups of degree at most*, Contemp. Math., vol. 82, 1989, pp. 243-254. MR**982293 (90a:20019)****[9]**-,*On linear groups of degrees at most*, J. Algebra (to appear).**[10]**P. Ferguson,*Complex linear groups of degree at most*, J. Algebra**92**(1985), 246-252. MR**786752 (86i:20035)****[11]**H. I. Blau,*Minimal modular character degrees for groups with a cyclic Sylow**-subgroup*(to appear). MR**539268 (80e:20008)****[12]**V. Landazuri and G. M. Seitz,*On the minimal degrees of projective representations of the finite Chevalley groups*, J. Algebra**32**(1974), 418-443. MR**0360852 (50:13299)****[13]**R. W. Carter,*Simple groups of Lie type*, Wiley-Interscience, New York, 1972. MR**0407163 (53:10946)****[14]**J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,*Atlas of finite groups*, Clarendon Press, Oxford, 1985. MR**827219 (88g:20025)****[15]**H. F. Blichfeldt,*Finite collineation groups*, Univ. of Chicago Press, Chicago, 1917.**[16]**F. Gross,*Automorphisms which centralize a Sylow**-subgroup*, J. Algebra**77**(1982), 202-233. MR**665174 (83i:20020)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20C20

Retrieve articles in all journals with MSC: 20C20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1028297-1

Article copyright:
© Copyright 1990
American Mathematical Society