Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some isomorphisms of abelian groups involving the Tor functor


Author: Patrick Keef
Journal: Proc. Amer. Math. Soc. 110 (1990), 27-37
MSC: Primary 20K10; Secondary 20K40
DOI: https://doi.org/10.1090/S0002-9939-1990-1030735-5
MathSciNet review: 1030735
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a reduced group $ G$, the class of groups $ A$ such that $ A \cong \operatorname{Tor} (A,G)$ is studied. A complete characterization is obtained when $ G$ is separable.


References [Enhancements On Off] (What's this?)

  • [1] D. Cutler and P. Dubois, Generalized final rank for arbitrary limit ordinals, Pacific J. Math. 37 (1971), 345-351. MR 0302783 (46:1926)
  • [2] P. Eklof, On singular compactness, Algebra Universalis 14 (1982), 310-316. MR 654400 (83f:20044)
  • [3] L. Fuchs, Infinite abelian groups, vol. 2, Academic Press, New York, 1973. MR 0349869 (50:2362)
  • [4] L. Fuchs and J. Irwin, On $ {p^{\omega + 1}}$-projective $ p$-groups, Proc. London Math. Soc. 3 (1975), 459-470. MR 0374288 (51:10488)
  • [5] P. Griffith, Infinite abelian groups, Chicago Lectures in Math., Chicago and London, 1970. MR 0289638 (44:6826)
  • [6] P. Hill, The balance of Tor, Math. Z. 182 (1983), 179-188. MR 689295 (84f:20059)
  • [7] -, On the structure of abelian $ p$-groups, Trans. Amer. Math. Soc. 288 (1985), 505-525. MR 776390 (86k:20050)
  • [8] J. Irwin, T. Snabb, and T. Cellars, The torsion product of totally projective $ p$-groups, Comment. Math. Univ. St. Paul 29 (1980), 1-5. MR 586242 (81j:20076)
  • [9] P. Keef, On the Tor functor and some classes of abelian groups, Pacific J. Math. 132 (1988), 63-84. MR 929583 (89b:20115)
  • [10] -, On iterated torsion products of abelian $ p$-groups, Rocky Mountain J. Math. (to appear).
  • [11] -, $ S$-groups, $ A$-groups and the Tor functor, Comment. Math., Univ. St. Paul (to appear).
  • [12] R. Nunke, Purity and subfunctors of the identity, Topics in Abelian Groups, Chicago, 1963, pp. 121-171. MR 0169913 (30:156)
  • [13] -, On the structure of Tor, Proc. Colloq. Abelian Groups (Budapest, 1964), pp. 115-124. MR 0169912 (30:155)
  • [14] -, On the structure of Tor II, Pacific J. Math. 22 (1967), 453-467. MR 0214659 (35:5508)
  • [15] R. Warfield, A classification theorem for abelian $ p$-groups, Trans. Amer. Math. Soc. 37 (1973), 149-168. MR 0372071 (51:8288)
  • [16] B. Wick, The calculation of an invariant for Tor, Pacific J. Math. 112 (1984), 445-450. MR 743996 (85i:20054)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20K10, 20K40

Retrieve articles in all journals with MSC: 20K10, 20K40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1030735-5
Keywords: Abelian $ p$-group, Tor functor, separable groups, direct sums of cyclic groups
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society