Asymptotic expansions for solutions of smooth recurrence equations
Authors:
ShingWhu Jha, Attila Máté and Paul Nevai
Journal:
Proc. Amer. Math. Soc. 110 (1990), 365370
MSC:
Primary 33C45; Secondary 39A10, 41A60
MathSciNet review:
1014646
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a convergent sequence of reals, where for each the tuple satisfies one of equations, depending on the residue class of , for some given and . Assume these equations are smooth, they have the same gradient in the first variables, and this gradient satisfies a certain nonmodularity condition. We then show that has asymptotic expansions, depending on the residue class of , in terms of powers of . This result enables us to discuss the asymptotic behavior of the recurrence coefficients associated with certain orthogonal polynomials. A key ingredient in the proof of the main result is a lemma involving exponential sums.
 [1]
William
C. Bauldry, Estimates of asymmetric Freud polynomials on the real
line, J. Approx. Theory 63 (1990), no. 2,
225–237. MR 1079852
(92c:33008), http://dx.doi.org/10.1016/00219045(90)90105Y
 [2]
William
C. Bauldry, Attila
Máté, and Paul
Nevai, Asymptotics for solutions of systems of smooth recurrence
equations, Pacific J. Math. 133 (1988), no. 2,
209–227. MR
941919 (89m:39002)
 [3]
Stanford
S. Bonan and Dean
S. Clark, Estimates of the Hermite and the Freud polynomials,
J. Approx. Theory 63 (1990), no. 2, 210–224. MR 1079851
(92c:33007), http://dx.doi.org/10.1016/00219045(90)90104X
 [4]
Géza
Freud, On the greatest zero of an orthogonal polynomial. I,
Acta Sci. Math. (Szeged) 34 (1973), 91–97. MR 0318761
(47 #7307)
 [5]
Géza
Freud, On the coefficients in the recursion formulae of orthogonal
polynomials, Proc. Roy. Irish Acad. Sect. A 76
(1976), no. 1, 1–6. MR 0419895
(54 #7913)
 [6]
D.
S. Lubinsky, H.
N. Mhaskar, and E.
B. Saff, Freud’s conjecture for
exponential weights, Bull. Amer. Math. Soc.
(N.S.) 15 (1986), no. 2, 217–221. MR 854558
(88d:42039), http://dx.doi.org/10.1090/S027309791986154807
 [7]
D.
S. Lubinsky, H.
N. Mhaskar, and E.
B. Saff, A proof of Freud’s conjecture for exponential
weights, Constr. Approx. 4 (1988), no. 1,
65–83. MR
916090 (89a:42034), http://dx.doi.org/10.1007/BF02075448
 [8]
Attila
Máté and Paul
Nevai, Asymptotics for solutions of smooth
recurrence equations, Proc. Amer. Math.
Soc. 93 (1985), no. 3, 423–429. MR 773995
(86d:39002), http://dx.doi.org/10.1090/S00029939198507739956
 [9]
Attila
Máté, Paul
Nevai, and Vilmos
Totik, Asymptotics for the greatest zeros of orthogonal
polynomials, SIAM J. Math. Anal. 17 (1986),
no. 3, 745–751. MR 838252
(87h:42040), http://dx.doi.org/10.1137/0517053
 [10]
A.
Máté, P.
Nevai, and V.
Totik, Asymptotics for the zeros of orthogonal polynomials
associated with infinite intervals, J. London Math. Soc. (2)
33 (1986), no. 2, 303–310. MR 838641
(87i:42037), http://dx.doi.org/10.1112/jlms/s233.2.303
 [H]
Attila
Máté, Paul
Nevai, and Thomas
Zaslavsky, Asymptotic expansions of ratios of
coefficients of orthogonal polynomials with exponential weights,
Trans. Amer. Math. Soc. 287 (1985),
no. 2, 495–505. MR 768722
(86b:42024), http://dx.doi.org/10.1090/S00029947198507687227
 [12]
Paul
Nevai, Orthogonal polynomials associated with
𝑒𝑥𝑝(𝑥⁴), Second Edmonton
conference on approximation theory (Edmonton, Alta., 1982), CMS Conf.
Proc., vol. 3, Amer. Math. Soc., Providence, RI, 1983,
pp. 263–285. MR 729336
(85b:42012)
 [13]
Paul
Nevai, Asymptotics for orthogonal polynomials associated with
𝑒𝑥𝑝(𝑥⁴), SIAM J. Math. Anal.
15 (1984), no. 6, 1177–1187. MR 762973
(86i:42011), http://dx.doi.org/10.1137/0515092
 [1]
 W. C. Bauldry, Estimates for asymmetric Freud polynomials, J. Approx. Theory 63 (1990) (to appear). MR 1079852 (92c:33008)
 [2]
 W. C. Bauldry, A. Máté, and P. Nevai, Asymptotics for solutions of systems of smooth recurrence equations, Pacific J. Math. 133 (1988), 209227. MR 941919 (89m:39002)
 [3]
 S. S. Bonan and D. S. Clark, Estimates of the Hermite and Freud polynomials, J. Approx. Theory 63 (1990) (to appear). MR 1079851 (92c:33007)
 [4]
 G. Freud, On the greatest zero of an orthogonal polynomial, Acta Sci. Math. 24 (1973), 9197. MR 0318761 (47:7307)
 [5]
 , On the coefficients in the recursion formulae of orthogonal polynomials, Proc. Roy. Irish Acad. Sec. A 76 (1976), 16. MR 0419895 (54:7913)
 [6]
 D. S. Lubinsky, H. N. Mhaskar, and E. B. Saff, Freud's conjecture for exponential weights, Bull. Amer. Math. Soc. 15 (1986), 217221. MR 854558 (88d:42039)
 [7]
 , A proof of Freud's conjecture for exponential weights, Constructive Approximation 4 (1988), 6583. MR 916090 (89a:42034)
 [8]
 A. Máté and P. Nevai, Asymptotics for the greatest zeros of orthogonal polynomials, Proc. Amer. Math. Soc. 93 (1985), 423429. MR 773995 (86d:39002)
 [9]
 A. Máté, P. Nevai, and V. Totik, Asymptotics for the zeros of orthogonal polynomials, SIAM J. Math. Anal 17 (1986), 745751. MR 838252 (87h:42040)
 [10]
 , Asymptotics for the zeros of orthogonal polynomials associated with infinite intervals, J. London Math. Soc. 33 (1986), 303310. MR 838641 (87i:42037)
 [H]
 A. Máté, P. Nevai, and T. Zaslavsky, Asymptotic expansions of ratios of orthogonal polynomials with exponential weights, Trans. Amer. Math. Soc. 287 (1985), 495505. MR 768722 (86b:42024)
 [12]
 P. Nevai, Orthogonal polynomials associated with , Second Edmonton Conference on Approximation Theory, Conference Proceedings 3, Canadian Mathematical Society, Ottawa, 1983, pp. 263265. MR 729336 (85b:42012)
 [13]
 , Asymptotics for orthogonal polynomials associated with , SIAM J. Math. Anal. 15 (1984), 11771187. MR 762973 (86i:42011)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
33C45,
39A10,
41A60
Retrieve articles in all journals
with MSC:
33C45,
39A10,
41A60
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199010146467
PII:
S 00029939(1990)10146467
Keywords:
Asymptotic expansions,
exponential sums,
orthogonal polynomials,
recurrence equations
Article copyright:
© Copyright 1990
American Mathematical Society
