ON APPROXIMATELY INNER AUTOMORPHISMS
OF CERTAIN CROSSED PRODUCT C*-ALGEBRAS

MARIUS DĂDĂRLAT AND CORNEL PASNICU

Abstract. Let G be a compact connected topological group having a dense subgroup isomorphic to \mathbb{Z}. Let $C(G) \rtimes \mathbb{Z}$ be the crossed product C^*-algebra of $C(G)$ with \mathbb{Z}, where \mathbb{Z} acts on G by rotations. Automorphisms of $C(G) \rtimes \mathbb{Z}$ leaving invariant the canonical copy of $C(G)$ are shown to be approximately inner iff they act trivially on $K_1(C(G) \rtimes \mathbb{Z})$.

Let G be a compact abelian topological group. An element $s \in G$ is called a generator if the group algebraically generated by s is dense in G. G is called monothetic if it has at least one generator. If in addition G is connected, this is equivalent to saying that the topology of G has a base of cardinality $\leq c$. Moreover if G is second countable then the set of generators is measurable and its Haar measure equals 1. (See [4], Theorems 24.15, 24.27.)

From now on, G is a monothetic compact connected infinite topological group and $s \in G$ is a fixed generator. Let $A = C(G)$ be the C^*-algebra of all complex-valued continuous functions on G. We consider the action $\alpha: \mathbb{Z} \to \text{Aut}(A)$ given by

$$(\alpha_k(a))(x) = a(s^{-k}x), \quad \text{for } a \in A, \ x \in G$$

and the corresponding crossed product C^*-algebra $A \rtimes \mathbb{Z}$ (see [5, 8]). Denote by $\text{Aut}_\alpha(A \rtimes \mathbb{Z})$ the closed subgroup

$$\{\beta \in \text{Aut}(A \rtimes \mathbb{Z}): \beta(A) = A\}$$

where $\text{Aut}(A \rtimes \mathbb{Z})$ has the topology of pointwise norm convergence. Note that $\text{Aut}_\alpha(A \rtimes \mathbb{Z}) = \{\beta \in \text{Aut}(A \rtimes \mathbb{Z}): \beta(A) \subset A\}$, since A is a maximal abelian self-adjoint subalgebra in $A \rtimes \mathbb{Z}$ (see [8], Proposition 4.14). We prove the following.

Received by the editors May 4, 1989; presented at the OATE 2 Conference, Craiova, Romania, August 28–September 8, 1989, organized by INCREST.

1980 Mathematics Subject Classification (1985 Revision). Primary 46L40; Secondary 46L80.

©1990 American Mathematical Society

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

383
1. **Theorem.** An automorphism $\beta \in \text{Aut}_\infty(A \times \mathbb{Z})$ is approximately inner iff β induces the identity automorphism of $K_1(A \times \mathbb{Z})$.

For G isomorphic to the one-dimensional torus T, the corresponding result is due to Brenken [2]. The proof uses the description of $\text{Aut}_\infty(A \times \mathbb{Z})$ which follows from more general results [3, Theorem 2.8].

Let u be the generator of \mathbb{Z} in $A \times \mathbb{Z}$, i.e. $A \times \mathbb{Z} = C^*(A, u)$ with $uau^* = \alpha_1(a)$ for $a \in A$. Then each $\beta \in \text{Aut}_\infty(A \times \mathbb{Z})$ is given by a unique triplet $(b, x, q) \in U(A) \times G \times \{-1, 1\}$ such that $\beta(u) = bu^q$ and $\beta(a)(y) = a(xy^q)$ for $a \in A$, $y \in G$. Here $U(A)$ denotes the unitary group of A (with the norm topology) and the correspondence $\beta \leftrightarrow (b, x, q)$ is a homeomorphism.

It follows by ([3], Lemma 2.4) that an automorphism is inner iff $q = 1$, $x = s^k$ for some $k \in \mathbb{Z}$ and b has the form $w(\cdot)w^*(s^{-1})$ for some $w \in U(A)$. In this case $\beta(t) = wu^{-k}tu^kw^*$, $t \in A \times \mathbb{Z}$. Therefore if $\beta \in \text{Aut}_\infty(A \times \mathbb{Z})$ is given by (b, x, q) then β is approximately inner provided that $q = 1$ and that b is in the closure of the set

$$\{w(\cdot)w^*(s^{-1}) : w \in U(A)\}.$$

Indeed, if $w_n(\cdot)w_n^*(s^{-1})$ converges to b in $U(A)$ and s^{k_n} converges to x in G then, $\text{ad}(w_nu^{-k_n})$ converges to b in $\text{Aut}_\infty(A \times \mathbb{Z})$.

2. **Lemma.** Let $\beta \in \text{Aut}_\infty(A \times \mathbb{Z})$ be given by (b, x, q). If β induces the identity automorphism of $K_1(A \times \mathbb{Z})$ then $q = 1$ and $b \in U_0(A)$ (the connected component of the identity in $U(A)$).

Proof. Since G is connected it follows that α_1 induces the identity automorphism of $K_1(A)$. Using the Pimsner-Voiculescu exact sequence [6] one sees that the canonical map $K_1(A) \rightarrow K_1(A \times \mathbb{Z})$ is injective. The obvious map $\pi^1(G) := [G, T] \rightarrow K_1(A)$ is also injective (use for instance the determinant map). Consequently, if $a \in U(A)$ then $a \in U_0(A)$ iff $[a] = 0$ in $K_1(A \times \mathbb{Z})$.

For $\gamma \in \hat{G}$ (the Pontrjagin dual of G) we have $\beta(\gamma) = \gamma(x)\gamma^q$. Therefore $[\gamma] = [\gamma^q]$ in $K_1(A \times \mathbb{Z})$ and by the above remarks γ is homotopic to γ^q as maps $G \rightarrow T$. By a result of Scheffer [7] this is possible only if $q = 1$. The equation $\beta(u) = bu$ implies that $[\beta(u)] = [b] + [u]$ in $K_1(A \times \mathbb{Z})$ hence using the hypothesis on β and the above remarks we find that $b \in U_0(A)$.

3. **Lemma.** The map $w \rightarrow w(\cdot)w^*(s^{-1})$ from $U(A)$ to $U_0(A)$ has dense range (compare with Theorem 4 in [2]).

Proof. Let $A_s = \{a(\cdot) - a(s^{-1}) : a \in A\}$. Our first aim is to prove that $A_s + C.1$ is a dense (linear, self-adjoint) subspace of A. This is accomplished by showing...
that it contains the \(*\)-subalgebra of \(C(G)\) generated by the characters of \(G\) (which is dense in \(C(G)\) by the Stone–Weierstrass Theorem). We use the fact that

\[
S = \{\chi(s) : \chi \in \hat{G} \setminus \{1\}\}
\]

is a dense subset of \(T\) and \(1 \notin S\) (see [4], Theorem 25.11). Thus if \(\gamma \in \hat{G} \setminus \{1\}\) then \(a = (1 - \gamma(s^{-1}))^{-1} \gamma\) is such that \(\gamma = a(\cdot) - a(s^{-1} \cdot) \in A_s\).

Any \(v \in U_0(A)\) has the form \(v = \exp(ih)\) for some \(h \in C(G, R)\). By the above discussion we can find \(a \in C(G, R)\) and \(\lambda \in R\) such that \(a(\cdot) - a(s^{-1} \cdot) + \lambda\) is arbitrarily close to \(h\) in norm. Also there is \(\gamma \in \hat{G} \setminus \{1\}\) such that \(|e^{i\lambda} - \gamma(s)|\) is arbitrarily small. Then for \(w = \gamma \exp(ia)\),

\[
w(\cdot)w^*(s^{-1} \cdot) = \gamma(s) \cdot \exp i(a(\cdot) - a(s^{-1} \cdot))
\]

will approximate \(v\) as well as we want.

Proof of the theorem. If \(\beta \in \text{Aut}_\infty(A \times \mathbb{Z})\) given by \((b, x, q)\) induces the identity automorphism of \(K_1(A \times \mathbb{Z})\) then by Lemma 2, \(b \in U_0(A)\) and \(q = 1\).

Using Lemma 3 we can find a sequence \(w_n \in U(A)\) such that \(w_n(\cdot)w_n^*(s^{-1} \cdot)\) converges to \(b\) in \(U_0(A)\). The discussion before Lemma 2 shows that \(\beta\) is approximately inner. The reverse implication is a general fact.

References

INCREST, Department of Mathematics, Bd. Păcii 220, 79622 Bucharest, Romania

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use