Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On approximately inner automorphisms of certain crossed product $ C\sp *$-algebras

Authors: Marius Dădărlat and Cornel Pasnicu
Journal: Proc. Amer. Math. Soc. 110 (1990), 383-385
MSC: Primary 46L55; Secondary 18F25, 46L40
MathSciNet review: 1021897
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a compact connected topological group having a dense subgroup isomorphic to $ {\mathbf{Z}}$. Let $ C(G)\mathop \rtimes \limits_ \propto {\mathbf{Z}}$ be the crossed product $ {C^ * }$-algebra of $ C(G)$ with $ {\mathbf{Z}}$, where $ {\mathbf{Z}}$ acts on $ G$ by rotations. Automorphisms of $ C(G)\mathop \rtimes \limits_ \propto {\mathbf{Z}}$ leaving invariant the canonical copy of $ C(G)$ are shown to be approximately inner iff they act trivially on $ {K_1}(C(G)\mathop \rtimes \limits_ \propto {\mathbf{Z}})$.

References [Enhancements On Off] (What's this?)

  • [1] B. Blackadar, $ K$-theory for operator algebras, MSRI Publications, Series 5, Springer-Verlag, New York, 1986. MR 859867 (88g:46082)
  • [2] B. Brenken, Approximately inner automorphisms of the irrational rotation algebra, C. R. Math. Rep. Acad. Sci. Canada VII (1985). MR 813959 (87h:46132)
  • [3] M. Dădărlat and C. Pasnicu, On certain automorphisms of reduced crossed products with discrete groups, J. Operator Theory 23 (1990), 179-193. MR 1054824 (92a:46077)
  • [4] E. Hewit and K. A. Ross, Abstract harmonic analysis, Springer-Verlag, Berlin, 1983.
  • [5] G. K. Pedersen, $ {C^ * }$-algebras and their automorphism groups, Academic Press, New York, 1979. MR 548006 (81e:46037)
  • [6] M. V. Pimsner and D. Voiculescu, Exact sequences for $ K$-groups and Ext-groups of certain crossed product $ {C^ * }$-algebras, J. Operator Theory 4 (1980), 93-118. MR 587369 (82c:46074)
  • [7] W. Scheffer, Maps between topological groups that are homotopic to homomorphisms, Proc. Amer. Math. Soc. 33 (1972), 562-567. MR 0301130 (46:288)
  • [8] G. Zeller-Meyer, Produits croisés d'une $ {C^*}$-algèbre par un groupe d'automorphismes, J. Math. Pures Appl. (9) 47 (1968), 101-239. MR 0241994 (39:3329)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L55, 18F25, 46L40

Retrieve articles in all journals with MSC: 46L55, 18F25, 46L40

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society