Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some random fixed point theorems for condensing and nonexpansive operators


Author: Hong Kun Xu
Journal: Proc. Amer. Math. Soc. 110 (1990), 395-400
MSC: Primary 47H10; Secondary 60H25
DOI: https://doi.org/10.1090/S0002-9939-1990-1021908-6
MathSciNet review: 1021908
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some random versions of deterministic fixed point theorems for condensing and nonexpansive operators are obtained.


References [Enhancements On Off] (What's this?)

  • [1] A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641-645. MR 0413273 (54:1390)
  • [2] -, Random integral equations, Academic Press, New York and London, 1972. MR 0443086 (56:1459)
  • [3] F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665. MR 0230179 (37:5742)
  • [4] R. E. Bruch, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math. 32 (1979), 107-116. MR 531254 (80j:47066)
  • [5] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, New York, and Basel, 1984. MR 744194 (86d:58012)
  • [6] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. MR 0367142 (51:3384)
  • [7] S. Itoh, A random fixed point theorem for a multivalued contraction mapping, Pacific J. Math. 68 (1977), 85-90. MR 0451228 (56:9515)
  • [8] -, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261-273. MR 528687 (80f:60059)
  • [9] W. A. Kirk, Fixed point theory for nonexpansive mappings I, II, Lecture Notes in Math., vol. 886, Springer-Verlag, Berlin and New York, 1981, pp. 484-505; Contemp. Math. 18 (1983), 121-140. MR 643024 (83c:47076)
  • [10] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selections, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 13 (1965), 397-403. MR 0188994 (32:6421)
  • [11] T. C. Lin, Random approximations and random fixed point theorems for non-self-maps, Proc. Amer. Math. Soc. 103 (1988), 1129-1135. MR 954994 (89i:47109)
  • [12] N. S. Papageorgiou, Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 97 (1986), 507-514. MR 840638 (88a:60117)
  • [13] S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl. 41 (1973), 460-467. MR 0322609 (48:971)
  • [14] -, On fixed point theorems obtained from existence theorems for differential equations, J. Math. Anal. Appl. 54 (1976), 26-36. MR 0402554 (53:6373)
  • [15] V. M. Sehgal and S. P. Singh, On random approximations and a random fixed point theorem for set valued mappings, Proc. Amer. Math. Soc. 95 (1985), 91-94. MR 796453 (86k:47049)
  • [16] V. M. Sehgal and C. Waters, Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc. 90 (1984), 425-429. MR 728362 (85g:47083)
  • [17] D. H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), 859-903. MR 0486391 (58:6137)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10, 60H25

Retrieve articles in all journals with MSC: 47H10, 60H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1021908-6
Keywords: Random fixed point, condensing random operator, nonexpansive random operator, weak inward condition, Leray-Schauder condition
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society