Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On ranges of polynomials in finite matrix rings


Author: Chen-Lian Chuang
Journal: Proc. Amer. Math. Soc. 110 (1990), 293-302
MSC: Primary 16A38; Secondary 16A42, 16A44
DOI: https://doi.org/10.1090/S0002-9939-1990-1027090-3
MathSciNet review: 1027090
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ C$ be a finite field and let $ {C_m}$ denote the ring consisting of all $ m \times m$ matrices over $ C$. By a polynomial, we mean a polynomial in noncommuting indeterminates with coefficients in $ C$. It is shown here that a subset $ A$ of $ {C_m}$ is the range of a polynomial without constant term if and only if $ 0 \in A$ and $ uA{u^{ - 1}} \subseteq A$ for all invertible elements $ u \in {C_m}$.


References [Enhancements On Off] (What's this?)

  • [1] J. V. Brawley and L. Carlitz, A characterization of the $ n \times n$ matrices over a finite field, Amer. Math. Monthly 80 (1973), 670-672. MR 0316499 (47:5046)
  • [2] C.-L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math. 59 (1987), 98-106. MR 923664 (89a:16024)
  • [3] B. Felzenszwalb and A. Giambruno, Periodic and nil polynomials in rings, Canad. Math. Bull. 23 (1980), 473-476. MR 602605 (82c:16018)
  • [4] I. Kaplansky, "Problems in the theory of rings" revisited, Amer. Math. Monthly 77 (1970), 445-454. MR 0258865 (41:3510)
  • [5] V. N. Latyšev and A. L. Šmel'kin, A certain problem of Kaplansky, Algebra i Logika 8 (1969), 447-448; English transl., Algebra and Logic 8 (1969), 257. MR 0272754 (42:7635)
  • [6] U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc. 202 (1975), 97-103. MR 0354764 (50:7241)
  • [7] L. H. Rowen, Polynomial identities in ring theory, Academic Press, New York, 1980. MR 576061 (82a:16021)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A38, 16A42, 16A44

Retrieve articles in all journals with MSC: 16A38, 16A42, 16A44


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1027090-3
Keywords: Polynomial, central polynomial, finite field
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society