Permutation polynomials and resolution of singularities over finite fields

Author:
Da Qing Wan

Journal:
Proc. Amer. Math. Soc. **110** (1990), 303-309

MSC:
Primary 11T06

DOI:
https://doi.org/10.1090/S0002-9939-1990-1031673-4

MathSciNet review:
1031673

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A geometric approach is introduced to study permutation polynomials over a finite field. As an application, we prove that there are no permutation polynomials of degree over a large finite field, where is an odd prime. This proves that the Carlitz conjecture is true for . Previously, the conjecture was known to be true only for .

**[1]**S. D. Cohen,*Permutation polynomials and primitive permutation groups*, University of Glasgow, Department of Mathematics, preprint series no. 89/41. MR**1129514 (92j:11145)****[2]**L. E. Dickson,*The analytic representation of substitutions on a prime power of letters with a discussion of the linear group*, Ann. of Math.**11**(1897), 65-120, 161-183.**[3]**R. Hartshorne,*Algebraic geometry*, Graduate Texts in Mathematics, no. 52, Springer-Verlag, Berlin and New York, 1977, 28-30. MR**0463157 (57:3116)****[4]**D. R. Hayes,*A geometric approach to permutation polynomials over a finite field*, Duke Math. J.**34**(1967), 293-305. MR**0209266 (35:168)****[5]**R. Lidl and G. L. Mullen,*When does a polynomial over a finite field permute the elements of the field*?, Amer. Math. Monthly**95**(1988), 243-246. MR**1541277****[6]**R. Lidl and H. Niderreiter,*Finite fields*, Encyclopedia Math. Appl., vol. 20, Addison-Wesley, Reading, MA, 1983.**[7]**W. M. Schmidt,*Equations over finite fields*, Lecture Notes in Math., vol. 536, Springer-Verlag, Heidelberg, 1976. MR**0429733 (55:2744)****[8]**B. Segre,*Arithmetische Eigenschaften von Galois-Raumen*, I, Math. Ann.**154**(1964), 195-256. MR**0165415 (29:2697)****[9]**Daqing Wan,*On a conjecture of Carlitz*, J. Austral. Math. Soc. (Ser. A)**43**(1987), 375-384. MR**904396 (89c:11178)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11T06

Retrieve articles in all journals with MSC: 11T06

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1031673-4

Article copyright:
© Copyright 1990
American Mathematical Society