An oscillation theorem for second order sublinear differential equations

Author:
James S. W. Wong

Journal:
Proc. Amer. Math. Soc. **110** (1990), 633-637

MSC:
Primary 34C10

DOI:
https://doi.org/10.1090/S0002-9939-1990-1000170-4

MathSciNet review:
1000170

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An oscillation criterion is given for the second order sublinear differential equation , where the coefficient is not assumed to be nonnegative for all large values of . The result extends a condition recently discovered by Butler, Erbe, and Mingarelli for the linear equation.

**[1]**G. J. Butler,*Integral averages and the oscillation of second order ordinary differential equations*, SIAM J. Math. Anal.**11**(1980), 190-200. MR**556509 (80m:34028)****[2]**G. J. Butler, L. H. Erbe, and A. B. Mingarelli,*Riccati techniques and variational principles in oscillation theory for linear systems*, Trans. Amer. Math. Soc.**303**(1987), 263-282. MR**896022 (88h:34023)****[3]**P. Hartman,*On nonoscillatory linear differential equations of second order*, Amer. J. Math.**74**(1952), 389-400. MR**0048667 (14:50b)****[4]**-,*Ordinary differential equations*, 2nd. ed., Wiley, New York, 1973.**[5]**-,*On nonoscillatory linear differential equations of second order*, Proc. Amer. Math. Soc.**64**(1977), 251-259. MR**0463565 (57:3510)****[6]**I. V. Kamenev,*Certain specifically nonlinear oscillation theorems*, Mat. Zametki**10**(1971), 129-134. (Russian) MR**0287077 (44:4284)****[7]**-,*Integral criterion for oscillations of linear differential equations of second order*, Mat. Zametki**23**(1978), 249-251. (Russian) MR**0486798 (58:6497)****[8]**M. K. Kwong and J. S. W. Wong,*Linearization of second order nonlinear oscillation theorems*, Trans. Amer. Math. Soc.**279**(1983), 705-722. MR**709578 (85f:34065)****[9]**D. Willett,*Classification of second order linear differential equations with respect to oscillation*, Adv. in Math.**3**(1969), 594-623. MR**0280800 (43:6519)****[10]**A. Wintner,*A criterion of oscillatory stability*, Quart. Appl. Math.**7**(1949), 114-117. MR**0028499 (10:456a)****[11]**J. S. W. Wong,*Oscillation theorems for second order nonlinear differential equations*, Bull. Inst. Math. Acad. Sinica**3**(1975), 283-309. MR**0390372 (52:11198)****[12]**-,*An oscillation criterion for second-order nonlinear differential equations*, Proc. Amer. Math. Soc.**98**(1986), 109-112. MR**848886 (87j:34061)****[13]**-,*An oscillation criterion for second-order sublinear differential equations*, Conference Proceedings, Canadian Mathematical Society, vol. 8, 1987, pp. 299-302. MR**909919 (88j:34068)****[14]**-,*Oscillation theorems for second-order nonlinear ordinary differential equations*, Proc. Amer. Math. Soc.**106**(1989), 1069-1077. MR**952324 (89m:34042)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C10

Retrieve articles in all journals with MSC: 34C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1000170-4

Keywords:
Second order,
sublinear,
ordinary differential equations,
oscillation,
weighted averages

Article copyright:
© Copyright 1990
American Mathematical Society