Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Oscillation in nonautonomous scalar differential equations with deviating arguments


Author: Yuan Ji Cheng
Journal: Proc. Amer. Math. Soc. 110 (1990), 711-719
MSC: Primary 34K15; Secondary 34C10
DOI: https://doi.org/10.1090/S0002-9939-1990-1023349-4
MathSciNet review: 1023349
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the oscillation in the nonautonomous scalar differential equations with deviating arguments and get some oscillation criteria. As an application of the results, we prove a conjecture posed by Brian R. Hunt and James A. Yorke in [1].


References [Enhancements On Off] (What's this?)

  • [1] B. R. Hunt and J. A. Yorke, When all solutions of $ x'(t) = - \Sigma {{q_i}(t)x(t - {T_i}(t))} $ oscillate, J. Differential Equations 53 (1984), 139-145. MR 748236 (85k:34169)
  • [2] O. Arino, I. Györi, and A. Jawhari, Oscillation criteria in delay equations, J. Differential Equations 53 (1984), 115-123. MR 747409 (85k:34168)
  • [3] G. Ladas, Y. G. Sficas, and I. P. Stavroulakis, Necessary and sufficient conditions for oscillation, Amer. Math. Monthly 90 (1983), 637-640. MR 719755 (84j:34082)
  • [4] G. S. Ladde, Oscillations caused by retarded perturbations of first order linear ordinary differential equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 63 (1977), 351-359. MR 548601 (80j:34097)
  • [5] T. Kusano, On even order functional differential equations with advanced and retarded arguments, J. Differential Equations 45 (1982), 75-84. MR 662487 (83i:34080)
  • [6] G. Ladas and I. P. Stavroulakis, Oscillation caused by several retarded and advanced arguments, J. Differential Equations 44 (1982), 134-152. MR 651691 (83e:34104)
  • [7] G. S. Ladde, V. Lakshmikantham, and B. G. Zhang, Oscillation theory of differential equations with deviating arguments, Marcel Dekker, New York and Basel, 1987. MR 1017244 (90h:34118)
  • [8] Cheng Yuanji, Oscillation criteria for first order differential equations with deviating arguments I, II, J. Math. Anal. Appl. (to appear). MR 1097301 (92c:34076)
  • [9] M. I. Tramov, Conditions for oscillatory solutions of first order differential equations with a deviating argument, Izv. Vyssh. Uchebn. Zaved. Mat. 19 (1975), 92-96. MR 0380060 (52:961)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34K15, 34C10

Retrieve articles in all journals with MSC: 34K15, 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1023349-4
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society