Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

$ L(X,C(K))$ as a dual space


Author: T. S. S. R. K. Rao
Journal: Proc. Amer. Math. Soc. 110 (1990), 727-729
MSC: Primary 47D15; Secondary 46A32, 46B10
MathSciNet review: 1023355
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We exhibit a class of Banach spaces $ X$, with $ {X^*}$ having nontrivial centralizer for which the space of operators $ L(X,C(K))$ is a dual space implies that $ K$ is hyperstonian.


References [Enhancements On Off] (What's this?)

  • [1] Ehrhard Behrends, 𝑀-structure and the Banach-Stone theorem, Lecture Notes in Mathematics, vol. 736, Springer, Berlin, 1979. MR 547509
  • [2] Ehrhard Behrends, On the geometry of spaces of 𝐶₀𝐾-valued operators, Studia Math. 90 (1988), no. 2, 135–151. MR 954168
  • [3] Michael Cambern and Peter Greim, Uniqueness of preduals for spaces of continuous vector functions, Canad. Math. Bull. 32 (1989), no. 1, 98–104. MR 996129, 10.4153/CMB-1989-014-0
  • [4] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
  • [5] H. Elton Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 208. MR 0493279
  • [6] Daniel Li, Espaces 𝐿-facteurs de leurs biduaux: bonne disposition, meilleure approximation et propriété de Radon-Nikodým, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 229–243 (French, with English summary). MR 891618, 10.1093/qmath/38.2.229
  • [7] Asvald Lima, Intersection properties of balls in spaces of compact operators, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, v, 35–65. MR 511813

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D15, 46A32, 46B10

Retrieve articles in all journals with MSC: 47D15, 46A32, 46B10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1023355-X
Keywords: Space of operators, $ M$-structure, centralizer, hyperstonian spaces
Article copyright: © Copyright 1990 American Mathematical Society