Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

$ L(X,C(K))$ as a dual space


Author: T. S. S. R. K. Rao
Journal: Proc. Amer. Math. Soc. 110 (1990), 727-729
MSC: Primary 47D15; Secondary 46A32, 46B10
DOI: https://doi.org/10.1090/S0002-9939-1990-1023355-X
MathSciNet review: 1023355
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We exhibit a class of Banach spaces $ X$, with $ {X^*}$ having nontrivial centralizer for which the space of operators $ L(X,C(K))$ is a dual space implies that $ K$ is hyperstonian.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D15, 46A32, 46B10

Retrieve articles in all journals with MSC: 47D15, 46A32, 46B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1023355-X
Keywords: Space of operators, $ M$-structure, centralizer, hyperstonian spaces
Article copyright: © Copyright 1990 American Mathematical Society