A Luecking-type subspace of and its dual

Authors:
Pratibha Ghatage and Shun Hua Sun

Journal:
Proc. Amer. Math. Soc. **110** (1990), 767-774

MSC:
Primary 46E15; Secondary 46B20

DOI:
https://doi.org/10.1090/S0002-9939-1990-1025278-9

MathSciNet review:
1025278

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this investigation is to determine the extent to which Luecking's decomposition of Bergman spaces [4] can be extended to . The set of functions for which an atomic decomposition (using the reproducing kernel of the Bergman space) is possible turns out to be only a small part of . In this note we equip each of such functions with a new norm and study the resulting Banach space. We describe its dual and predual.

**[1]**J. M. Anderson,*Bloch functions: the basic theory*, Operators and function theory (Lancaster, 1984) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 153, Reidel, Dordrecht, 1985, pp. 1–17. MR**810441****[2]**Sheldon Axler,*Bergman spaces and their operators*, Surveys of some recent results in operator theory, Vol. I, Pitman Res. Notes Math. Ser., vol. 171, Longman Sci. Tech., Harlow, 1988, pp. 1–50. MR**958569****[3]**Daniel Luecking,*A technique for characterizing Carleson measures on Bergman spaces*, Proc. Amer. Math. Soc.**87**(1983), no. 4, 656–660. MR**687635**, https://doi.org/10.1090/S0002-9939-1983-0687635-6**[4]**Daniel H. Luecking,*Representation and duality in weighted spaces of analytic functions*, Indiana Univ. Math. J.**34**(1985), no. 2, 319–336. MR**783918**, https://doi.org/10.1512/iumj.1985.34.34019**[5]**Richard Rochberg,*Decomposition theorems for Bergman spaces and their applications*, Operators and function theory (Lancaster, 1984) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 153, Reidel, Dordrecht, 1985, pp. 225–277. MR**810448****[6]**D. Sarason,*Blaschke products in*, Linear and Complex Analysis Problem Book (V. P. Havin, S. V. Hrusčëv, and N. K. Nickolśkii, eds.), Lecture Notes in Math., vol. 1043, Springer, Berlin, 1984, pp. 337-338.**[7]**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095****[8]**Allen L. Shields and David L. Williams,*Bounded projections, duality, and multipliers in spaces of harmonic functions*, J. Reine Angew. Math.**299/300**(1978), 256–279. MR**0487415**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46E15,
46B20

Retrieve articles in all journals with MSC: 46E15, 46B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1025278-9

Article copyright:
© Copyright 1990
American Mathematical Society