DERIVATIVES OF HARDY FUNCTIONS

BOO RIM CHOE

(Communicated by Clifford J. Earle, Jr.)

ABSTRACT. Let B be the open unit ball of \mathbb{C}^n, and set $S = \partial B$. It is shown that if $\varphi \in L^p(S)$, $\varphi > 0$, is a lower semicontinuous function on S and $1/q > 1 + 1/p$, then, for a given $\varepsilon > 0$, there exists a function $f \in H^p(B)$ with $f(0) = 0$ such that $|f^*| = \varphi$ almost everywhere on S and $\int_B |\nabla f|^q dV < \varepsilon$ where V denotes the normalized volume measure on B.

1. Introduction

Let B be the open unit ball of \mathbb{C}^n, and set $S = \partial B$. The rotation-invariant probability measure on S will be denoted by σ. The Hardy space $H^p(B)$, $0 < p < \infty$, is then the space of holomorphic functions on B for which

$$\sup_{0<r<1} \int_S |f(r\zeta)|^p d\sigma(\zeta) < \infty.$$

For $p = \infty$, $H^\infty(B)$ denotes the space of bounded holomorphic functions on B. As is well known, to each H^p-function f corresponds its boundary value f^* defined almost everywhere on S by $f^*(\zeta) = \lim_{r \to 1} f(r\zeta)$; the term “almost every” will always refer to the measure σ. A remarkable fact about these boundary values of H^p-functions is that they can be prescribed as in the following.

Theorem A (Alexandrov [1]). Suppose $\varphi > 0$ is a lower semicontinuous function on S and $\varphi \in L^p(\sigma)$ for some $0 < p \leq \infty$. Then there exists a function $f \in H^p(B)$ with $f(0) = 0$ such that $|f^*| = \varphi$ almost everywhere on S.

At least for $n > 1$, it seems to be the price we pay for prescribing boundary values of H^p-functions as above that their derivatives may get out of control in general. Roughly speaking, when $n > 1$, a theorem of Rudin [5] shows that if $f \in H^\infty(B)$ is nonconstant and $|f^*| = 1$ on some open subset Γ of S, then f must be extremely oscillatory near a G_δ dense subset Ω of Γ, so that its derivatives may get huge near Ω. One such example (when $n > 1$) is the fact [2] that if f is inner (i.e., $f \in H^\infty(B)$ and $|f^*| = 1$ almost everywhere on
and if \(\int_B |\nabla f|^2 dV < \infty \), then \(f \) must be constant. Here and elsewhere, \(\nabla f = (\partial f/\partial z_1, \ldots, \partial f/\partial z_n) \) and \(V \) denotes the normalized volume measure on \(B \). In some special cases, however, one may have those derivatives under very good control. For example, one can choose \(f \) in Theorem A so that \(\int_B |\nabla f|^q dV \) is arbitrarily small whenever \(1/q > 1 + n/p \). This follows from Theorem A itself.

Proof (sketch). Let \(f \) be as in Theorem A, fix an inner function \(u \) on \(B \) such that \(u(0) = 0 \), and define \(f_m = u^m f \) for \(m = 1, 2, \ldots \). Then Theorem A holds with \(f_m \) in place of \(f \). Note that \(f_m \) converges to 0 uniformly on compact subsets of \(B \) and therefore so does \(|\nabla f_m| \). Since

\[
|f_m(z)| \leq C_{n,p,\|\varphi\|_L^p(\sigma)} \left(\frac{1}{1-|z|} \right)^{n/p} \quad (z \in B),
\]

we have by the Cauchy estimates

\[
|\nabla f_m(z)| \leq C_{n,p,\|\varphi\|_L^p(\sigma)} \left(\frac{1}{1-|z|} \right)^{1+n/p} \quad (z \in B).
\]

It follows that the sequence \(|\nabla f_m|^q \) is dominated by an integrable function on \(B \) whenever \(1/q > 1 + n/p \), and thus \(\int_B |\nabla f_m|^q dV \) converges to 0 as \(m \to \infty \). \(\square \)

In the present paper we obtain a better upper bound for \(q \) in the above observation, which is the main result of the paper.

Main theorem. Let \(\varphi > 0 \) be a lower semicontinuous function on \(S \). Suppose \(\varphi \in L^p(\sigma) \) for some \(0 < p \leq \infty \) and \(1/q > 1 + 1/p \). Then, for a given \(\varepsilon > 0 \), there exists a function \(f \in H^p(B) \) with \(f(0) = 0 \) such that \(|f^*| = \varphi \) almost everywhere on \(S \) and \(\int_B |\nabla f|^q dV < \varepsilon \).

The author does not know whether the upper bound \((1+1/p)^{-1} \) for \(q \) in the above theorem is sharp in general. There is, however, a reason why the upper bound cannot be bigger than 1, as the following remark shows.

Remark. Suppose \(f \in H^p(B) \) and \(f(0) = 0 \). Then

\[
|f^*(\zeta)| \leq \int_0^1 \left| \frac{\partial}{\partial t} f(t\zeta) \right| dt \leq \int_0^1 |\nabla f(t\zeta)| dt
\]

for almost every \(\zeta \in S \). Hence, for \(q \geq 1 \), we have

\[
\int_S |f^*|^q d\sigma \leq \int_S \int_0^1 |\nabla f(t\zeta)|^q dt d\sigma(\zeta) \leq C_{n,q} \int_B |\nabla f|^q dV.
\]

It follows that if the conclusion of the main theorem holds for some \(q \), then \(q < 1 \). Note that the upper bound for \(q \) in the main theorem is sharp for \(p = \infty \).

2. **Proof of main theorem**

We need prove the main theorem only for higher-dimensional cases. From now on, \(n > 1 \) will therefore be fixed. The main idea is to modify Rudin's
proof [5] of Theorem A so that the derivatives in question are all under control at the same time. Before going further, let us introduce some notation first. There is a nonisotropic metric \(d \) on \(S \) defined by
\[
d(\zeta, \eta) = |1 - \zeta, \eta |^{1/2} \quad (\zeta, \eta \in S).
\]
Since \(\sigma \) is rotation-invariant, the volume \(\sigma(Q_\delta(\eta)) \) of the corresponding balls
\[
Q_\delta(\eta) = \{ \zeta \in S : d(\zeta, \eta) < \delta \} \quad (0 < \delta < \sqrt{2})
\]
is independent of \(\eta \) and thus will be denoted by \(A(\delta) \). The notation \(A(B) \) will denote the class of functions holomorphic on \(B \) and continuous on \(B \).
Finally, \(\chi_E \) will denote the characteristic function of \(E \subset S \).

Lemma 1. Let \(0 < p < 1 \). Then there are constants \(\alpha = \alpha(n, p) < 1 \) and \(\beta = \beta(n, p) > 10 \) with the following property: If \(Q = Q_\delta(\eta) \), \(0 < \delta < 1 \), and
\[
h(z) = \frac{i \langle z, \eta \rangle}{[2 + \beta \delta^{-2}(1 - \langle z, \eta \rangle)]^{4n/p}} \quad (z \in \bar{B}),
\]
then
\[
\begin{align*}
(1) \quad \int_S |h|^{1/2} d\sigma &< A(\delta), \\
(2) \quad \int_S \chi_Q - \text{Re} \ h|^{1/2} d\sigma &< \alpha \cdot A(\delta), \\
(3) \quad \int_B |\nabla h|^p dV &< \delta^{2n+2-2p}.
\end{align*}
\]

Proof. For \(t \geq 1 \) and \(z \in \bar{B} \), define
\[
h_t(z) = \frac{i < z, \eta >}{[2 + t(1 - < z, \eta >)]^{4n/p}}.
\]
Then
\[
(4) \quad |\nabla h_t(z)|^p \leq \frac{1}{|2 + t(1 - < z, \eta >)|^{4n}} + \frac{8nt^p}{|2 + t(1 - < z, \eta >)|^{4n+p}}.
\]
By [3, Proposition 17] we have the following integral formula:
\[
\int_B \frac{dV(z)}{|1 - < z, w >|^l} = \left(\frac{1}{1 - |w|^2} \right)^{l-1} \int_B \frac{dV(z)}{|1 - < z, w >|^{2n+2-l}}
\]
for \(l \) real and \(w \in \bar{B} \). From this it is easily verified that
\[
\int_B \frac{dV(z)}{|2 + t(1 - < z, \eta >)|^l} < \left(\frac{1}{2t} \right)^{n+1}
\]
holds for every \(l > 2n + 2 \). Thus, by (4),
\[
\int_B |\nabla h_t|^p dV < \frac{10n}{2^{n+1}} \left(\frac{1}{t} \right)^{n+1-p}.
\]
which in turn implies (3) whenever $\beta > 10$. We need find such β for which (1) and (2) also hold.

Assume t is sufficiently large so that $t\delta^2 \geq 2$. Then the set $E_t = \{\zeta \in \mathcal{S} : |1 - t(1 - \langle \zeta, \eta \rangle)| < 1\}$ is contained in Q, and hence

$$\int_Q |\text{Re} \, h_i|^2 \, d\sigma \geq \int_{E_t} |\text{Re} \, h_i(\zeta)|^2 \, d\sigma(\zeta).$$

On the right side of the above, make successive changes of variables, first $\lambda = \langle \zeta, \eta \rangle$ and then $w = t(1 - \lambda)$, to obtain

$$\frac{n - 1}{\pi t^n} \int_D \left| \text{Im} \, \frac{1 - t^{-1}w}{(2 + w)^{4n/p}} \right|^2 \left(2 \text{Re} \, w - \frac{|w|^2}{t} \right)^{n-2} \, dm(w)$$

where $D = \{w \in \mathbb{C} : |1 - w| < 1\}$ and m denotes the area measure on \mathbb{C}. From this we easily obtain a positive constant $c = c(n, p) < 1$ such that

$$\frac{1}{8} \int_Q |\text{Re} \, h_i|^2 \, d\sigma \geq \left(\frac{c}{t} \right)^n$$

whenever $t\delta^2 \geq 2$.

We now define $\beta = 10/c$. Then $\beta > 10$ and [5, §3.7] shows that (1) and (2) hold with $\alpha = 1 - (c^2/20)^n + (c^2/25)^n$. This completes the proof. \qed

Lemma 2. Let $0 < p < 1$. Then there is a constant $\gamma = \gamma(n, p) < 1$ with the following property: If $Q = Q_r(\eta)$, $0 < r < 1$, and $\tau_i > 0$, $i = 1, 2$, then there exists a function $f \in A(B)$ with $f(0) = 0$ such that

(5) $|f| < 1$ on Q,

(6) $|f| < \tau_1$ on $S \setminus Q$,

(7) $\int_S |f|^{1/2} \, d\sigma < A(r)$,

(8) $\int_S |x \cdot \text{Re} \, f|^{1/2} \, d\sigma < \gamma \cdot A(r)$,

(9) $\int_B |\nabla f|^p \, dV < \tau_2$.

Proof. Put $\tau = \min\{1/2, \tau_1, \tau_2^{1/(1-p)}\}$ and let $\delta = \tau r$. Pick a maximal collection $\{\zeta_1, \ldots, \zeta_N\}$ of points in $Q_{r/2}(\eta)$ subject to the condition $d(\zeta_i, \zeta_j) \geq 2\delta$ for $i \neq j$. Then the d-balls $Q_j = Q_{\delta}(\zeta_j)$ are pairwise disjoint and contained in Q. Thus, by [4, Proposition 5.1.4]

$$N \leq \frac{A(r)}{A(\delta)} \leq \left(\frac{r}{\delta} \right)^{2n} = \tau^{-2n}.$$

Associate h_j to Q_j as in Lemma 1 and define

$$f = h_1 + \cdots + h_N.$$
Obviously \(f \in A(B) \), \(f(0) = 0 \), and [5, §3.8] shows that \(f \) satisfies (5) \(\sim \) (8) with \(\gamma = [1 - (1 - \alpha)16^{-n}] \), where \(\alpha \) is the same constant as in Lemma 1.

Note that \(|\nabla f|^p \leq |\nabla h_1|^p + \cdots + |\nabla h_N|^p \). Therefore, by (10) and the choice of \(\tau \), we have

\[
\int_B |\nabla f|^p \, dV \leq N\delta^{2n+2-2p} < \tau^{2-2p} \leq \tau^2.
\]

This proves (9). The proof is complete. \(\Box \)

In the following lemma, \(P[\psi] \) denotes the Poisson integral of \(\psi \in L^1(\sigma) \). That is,

\[
P[\psi](z) = \int_S \frac{1 - |z|^2}{|z - \zeta|^{2n}} \psi(\zeta) \, d\sigma(\zeta) \quad (z \in B).
\]

Lemma 3. Suppose that \(\varphi > 0 \) is a lower semicontinuous function on \(S \) and \(\varphi \in L^1(\sigma) \). Then, for given \(0 < p < 1 \) and \(\epsilon > 0 \), there exists a function \(F \in H^{1/2}(B) \) with \(F(0) = 0 \) such that

(a) \(\Re F^* = \varphi \) almost everywhere on \(S \)

(b) \(\Re F \leq P[\varphi] \) on \(B \), and

(c) \(\int_B |\nabla F|^p \, dV < \epsilon \).

Note. In the proof of the main theorem the fact that \(F(0) = 0 \) will not be used. However, it implies that \(F \) is nonconstant as far as the lemma itself is concerned.

Proof. Let \(\gamma < 1 \) be the same constant as in Lemma 2, and assume \(\int_S \varphi^{1/2} \, d\sigma < 1 \) without loss of generality. We will choose by induction a sequence of functions \(F_0, F_1, \ldots \) such that for \(N = 0, 1, \ldots \),

\[\begin{align*}
(11_N) \quad F_N & \in A(B) \quad \text{and} \quad F_N(0) = 0, \\
(12_N) \quad \varphi - \Re (F_0 + \cdots + F_N) > 0 \quad \text{on} \ S, \\
(13_N) \quad \int_S [\varphi - \Re (F_0 + \cdots + F_N)]^{1/2} \, d\sigma < \left(\frac{1 + \gamma}{2} \right)^N, \\
(14_N) \quad \int_S |F_N|^{1/2} \, d\sigma < \left(\frac{1 + \gamma}{2} \right)^{N-1}, \\
(15_N) \quad \int_B |\nabla F_N|^p \, dV < \frac{\epsilon}{2^{N+1}}.
\end{align*} \]

To begin the induction, put \(F_0 \equiv 0 \); (11_0) \(\sim \) (15_0) are trivial. Suppose now that \(F_0, \ldots, F_N \) have been chosen so that (11_N) \(\sim \) (15_N) hold. Put \(\varphi_N = \varphi - \Re (F_0 + \cdots + F_N) \). Then \(\varphi_N \) is a positive lower semicontinuous function on \(S \) and thus can be approximated by an increasing sequence of positive continuous functions on \(S \). Therefore the proof of [5, Lemma 3.4] shows that there are positive numbers \(c_1, \ldots, c_j \), and a disjoint collection
\[\{ Q_1, \ldots, Q_J \} = \{ Q_{r_1}(\eta_1), \ldots, Q_{r_J}(\eta_J) \}, \quad 0 < r_j < 1, \] of \(d \)-balls such that
\[\int_S \left(\phi_n - \sum_{j=1}^J c_j \chi_{Q_j} \right)^{1/2} < \frac{1 - \gamma}{2} \int_S \phi_n^{1/2} d\sigma \]
and
\[\phi_n - \sum_{j=1}^J c_j \chi_{Q_j} > \tau \quad \text{on} \ S \]
for some positive number \(\tau \). Associate \(f_j \) to \(Q_j \) as in Lemma 2, with \(\tau_1 = \tau/2Jc_j \) and \(\tau_2 = \varepsilon/2^{N+2}Jc_j^p \) for \(j = 1, \ldots, J \) and define
\[F_{N+1} = c_1 f_1 + \cdots + c_J f_j. \]
Then (11\(_{N+1}\)) is clear, and [5, §3.9] shows that (12\(_{N+1}\)) \((14\(_{N+1}\)) \text{ are satisfied. Finally,}
\[\int_B |\nabla F_{N+1}|^p dV \leq \sum_{j=1}^J c_j^p \int_B |\nabla f_j|^p dV < \frac{\varepsilon}{2^{N+2}}. \]
This proves (15\(_{N+1}\)), and the construction can therefore proceed. By (14\(_N\))
\[\sum_{N=0}^\infty \int_S |F_N|^{1/2} d\sigma < \infty, \]
so that \(F = \sum_{N=0}^\infty F_N \in H^{1/2}(B) \) and \(F(0) = 0 \), since the same is true of each \(F_N \). Next, (a) and (c) follow from (13\(_N\)) and (15\(_N\)), respectively. Finally, (b) follows from (12\(_N\)) by the harmonicity of each \(F_0 + \cdots + F_N \). The proof is complete. \(\Box \)

Proof of main theorem. We may assume \(0 < p < \infty \). Also, without loss of generality, assume \(\varphi > 1 \) so that \(\log \varphi > 0 \). Note that \(\log \varphi \in L^1(\sigma) \) by Jensen’s inequality and that \(1/r = 1/q - 1/p > 1 \) by assumption. Thus, by Lemma 3, there is a function \(F \in H^{1/2}(B) \) such that
\[\text{Re } F^* = \log \varphi \quad \text{almost everywhere on } S, \]
\[\text{Re } F \leq P[\log \varphi] \quad \text{on } B, \]
and
\[\left(\int_B |\nabla F|^r dV \right)^{1/r} \left(\int_S \varphi^p d\sigma \right)^{1/p} < \left(\frac{\varphi}{2} \right)^{1/q}. \]
Choose an inner function \(u \) on \(B \) with \(u(0) = 0 \) such that
\[\left(\int_B |\nabla u|^r dV \right)^{1/r} \left(\int_S \varphi^p d\sigma \right)^{1/p} < \left(\frac{\varphi}{2} \right)^{1/q}. \]
This can be done because $r < 1$ (see the Introduction). We now define $f = u \exp F$. Clearly $f(0) = 0$, $f \in H^p(B)$ by (17), and $|f^*| = \varphi$ almost everywhere on S by (16). Note that $(P[\varphi^q])^{p/q} \leq P[\varphi^p]$ by Jensen's inequality. Thus, by Hölder's inequality and (18), we obtain

$$\int_B |\nabla F|^q P[\varphi^q] \, dV \leq \left(\int_B |\nabla F|^r \, dV \right)^{q/r} \left(\int_B P[\varphi^p] \, dV \right)^{q/p} = \left(\int_B |\nabla F|^r \, dV \right)^{q/r} \left(\int_S \varphi^p \, d\sigma \right)^{q/p} < \frac{\varepsilon}{2}.$$

Similarly, by (19),

$$\int_B |\nabla u|^q P[\varphi^q] \, dV < \frac{\varepsilon}{2}.$$

It follows that

$$\int_B |\nabla f|^q \, dV < \varepsilon$$

because $|\nabla f|^q \leq (|\nabla u|^q + |\nabla F|^q) P[\varphi^q]$. The proof is complete. □

Remark. Let $N_*(B)$ denote the Smirnov class consisting of holomorphic functions on B for which

$$\sup_{0<r<1} \int_S \log^+ |f_r| \, d\sigma < \infty$$

and $\{\log^+ |f_r|\}$ is uniformly integrable (with respect to the measure σ), where $f_r(\zeta) = f(r\zeta)$ for $\zeta \in S$. Then a trivial modification of the above proof of the Main Theorem shows the following:

Theorem 4. Let $\varphi > 0$ be a lower semicontinuous function on S such that

$$\log \varphi \in L^1(\sigma).$$

Then, for a given $\varepsilon > 0$, there exists a function $f \in N_*(B)$ with $f(0) = 0$ such that $|f^*| = \varphi$ almost everywhere on S and $\exp \int_B \log |\nabla f| \, dV < \varepsilon$. □

References

Department of Applied Mathematics, Korea Advanced Institute of Science and Technology, P.O. Box 150, Cheong-Ryang, Seoul 130-650, Korea