Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Homological dimensions in a Morita context with applications to subidealizers and fixed rings

Authors: Philippe Loustaunau and Jay Shapiro
Journal: Proc. Amer. Math. Soc. 110 (1990), 601-610
MSC: Primary 16D90; Secondary 16E10, 16W20
MathSciNet review: 1033958
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a Morita context $ (R,S,V,W,\theta ,\psi )$, we investigate the relationship between the various homological dimensions of the rings $ R$ and $ S$. We then apply these results to two particular examples: subidealizers and fixed rings.

References [Enhancements On Off] (What's this?)

  • [C] M. Cohen, A Morita context related to finite automorphism groups of rings, Pacific J. Math. 98 (1982), 37-54. MR 644936 (83g:16063)
  • [F] C. Faith, Algebra: rings, modules and category I, Springer-Verlag, New York, 1973. MR 0366960 (51:3206)
  • [G] K. R. Goodearl, Subrings of idealizer rings, J. Algebra 33 (3) (1975), 405-429. MR 0357510 (50:9978)
  • [H] F. Hansen, Ringerweiterung und lokalisation, Comm. Algebra 7 (1979), 689-751. MR 529317 (80f:16029)
  • [J] S. Jøndrup, When is the ring a projective module over the fixed point ring?, Comm. Algebra 16 (1988), 1971-1992. MR 956151 (89f:16030)
  • [K] I. Kaplansky, Fields and rings, Chicago Lectures in Mathematics, Chicago, 1972.
  • [KK] E. Kirkman and J. Kuzmanovich, Global dimensions of a class of tiled orders, J. Algebra (to appear). MR 1029402 (91c:16011)
  • [L] M. Lorenz, On the global dimension of fixed rings, preprint. MR 972235 (89m:16068)
  • [LS] P. Loustaunau and J. Shapiro, Localization in a Morita context with application to fixed rings, preprint. MR 1132577 (92k:16034)
  • [McCR] J. C. McConnell and J. C. Robson, Noncommutative noetherian rings, Wiley Series in Pure and Appl. Math., New York, 1987. MR 934572 (89j:16023)
  • [R] J. Rotman, An introduction to homological algebra, Academic Press, Orlando, 1979. MR 538169 (80k:18001)
  • [RS] J. C. Robson and L. W. Small, Another change of rings theorem, Bull. London Math. Soc. 20 (1988), 297-301. MR 940280 (89m:16048)
  • [T] M. L. Teply, Subidealizers, Module Theory: Papers and Problems, Proceedings (Seattle 1977), Lecture Notes in Math., vol. 700, Springer-Verlag, Berlin, 1979, pp. 232-234. MR 550437 (80k:16003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16D90, 16E10, 16W20

Retrieve articles in all journals with MSC: 16D90, 16E10, 16W20

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society