Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On nonselfadjoint operator algebras


Authors: Edward G. Effros and Zhong-Jin Ruan
Journal: Proc. Amer. Math. Soc. 110 (1990), 915-922
MSC: Primary 47D25; Secondary 46H99, 46L99, 46M05
DOI: https://doi.org/10.1090/S0002-9939-1990-0986648-8
MathSciNet review: 986648
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The $ M$-ideals in a (not necessarily self-adjoint) unital operator algebra are the closed two sided ideals containing a contractive relative identity. The spatial tensor product of unital operator algebras need not be a minimal matricial cross-norm tensor product.


References [Enhancements On Off] (What's this?)

  • [1] E. Alfsen and E. Effros, Structure in real Banach spaces, Ann. of Math. 96 (1972), 98-173. MR 0352946 (50:5432)
  • [2] R. Arens, The adjoint of a bilinear operations, Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 0045941 (13:659f)
  • [3] W. Arveson, Subalgebras of $ {C^*}$-algebras, Acta Math. 123 (1969), 141-224. MR 0253059 (40:6274)
  • [4] D. Blecher, Z. Ruan, and A. Sinclair, A characterization of operator algebras, J. Funct. Anal. (to appear).
  • [5] F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, Cambridge Univ. Press, 1971. MR 0288583 (44:5779)
  • [6] M.-D. Choi, A Schwarz inequality for positive linear maps on $ {C^*}$ -algebras, Illinois J. Math. 18 (1974), 565-574. MR 0355615 (50:8089)
  • [7] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 0143056 (26:622)
  • [8] M. Cunningham, E. Effros, and N. Roy, $ M$-structure in dual Banach spaces, Israel J. Math. 14 (1973), 304-309. MR 0322528 (48:890)
  • [9] J. Dixmier, Les $ {C^*}$-algèbres et leurs repreśentations, Gauthier-Villars, Paris 1964. MR 0171173 (30:1404)
  • [10] E. Effros, Advances in quantized functional analysis, Proc. I.C.M. Berkeley, 1986. MR 934293 (89e:46064)
  • [11] T. Gamelin, C. Marshall, R. Younis, and W. Zame, Function Theory and $ M$-ideals, Ark. Mat. 23 (1985), 261-279. MR 827346 (87m:46102)
  • [12] M. Hamana, Injective envelopes of operator systems, Publ. Res. Inst. Math. Sci. Kyoto Univ. 15 (1979), 773-785. MR 566081 (81h:46071)
  • [13] V. Paulsen and S. Power, Tensor products of non-selfadjoint operator algebras, Rocky Mountain J. Math. (to appear). MR 1065833 (92d:47061)
  • [14] R. Smith, An addendum to "$ M$-ideal structure in Banach algebras," J. Funct. Anal. 32 (1979), 269-271. MR 538853 (80j:46087)
  • [15] R. Smith and J. Ward, $ M$-ideal structure in Banach algebras, J. Funct. Anal. 27 (1978), 337-349. MR 0467316 (57:7175)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D25, 46H99, 46L99, 46M05

Retrieve articles in all journals with MSC: 47D25, 46H99, 46L99, 46M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0986648-8
Keywords: Non-self-adjoint operator algebras, $ M$-ideals, tensor products
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society