Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Tucker-Ky Fan colorings


Author: K. S. Sarkaria
Journal: Proc. Amer. Math. Soc. 110 (1990), 1075-1081
MSC: Primary 57N10; Secondary 05C15, 57M05
DOI: https://doi.org/10.1090/S0002-9939-1990-1004424-7
MathSciNet review: 1004424
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of a continuous $ {{\mathbf{Z}}_2}$-map from a free $ m$-dimensional $ {{\mathbf{Z}}_2}$-simplicial complex $ E$ to the $ (m - 1)$-dimensional antipodal sphere $ {S^{m - 1}}$ is characterized by means of an enumerative combinatorial criterion involving a coloring of the vertices of $ E$. The Borsuk-Ulam theorem, 1933, and the combinatorial lemmas of Tucker, 1945, and Ky Fan, 1952, are easy consequences of this result for the case $ \vert E\vert = {S^m}$.


References [Enhancements On Off] (What's this?)

  • [1] K. Borsuk, Drei Sätze über die $ n$-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177-190.
  • [2] A. Dold, Simple proofs of some Borsuk-Ulam results, Contemp. Math. 19 (1983), 65-69. MR 711043 (85e:55003)
  • [3] A. Flores, Über $ n$-dimensionale Komplexe, die im $ {R_{2n + 1}}$ absolut selbstverschlungen sind, Ergeb. math. Kolloq. 6 (1933/34), 4-7.
  • [4] Ky Fan, A generalization of Tucker's combinatorial lemma with topological applications, Ann. of Math. 56 (1952), 431-437. MR 0051506 (14:490c)
  • [5] J. W. Milnor, Construction of universal bundles I, II, Ann. of Math. (2) 63 (1956), 272-284, 430-436. MR 0077122 (17:994b)
  • [6] M. Richardson and P. A. Smith, Periodic transformations of complexes, Ann. of Math. (2) 39 (1938), 611-633. MR 1503428
  • [7] K. S. Sarkaria, A generalized Kneser conjecture, J. Combin. Theory Ser. B (to appear). MR 1064678 (91g:05003)
  • [8] -, A generalized van Kampen-Flores theorem, Proc. Amer. Math. Soc. (to appear). MR 1004423 (91f:57011)
  • [9] -, Kuratowski complexes, Topology (to appear). MR 1081934 (91k:57025)
  • [10] A. Shapiro, Obstructions to the imbedding of a complex in a Euclidean space. I. The first obstruction, Ann. of Math. (2) 66 (1957), 256-269. MR 0089410 (19:671a)
  • [11] N. E. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, 1951. MR 0039258 (12:522b)
  • [12] A. W. Tucker, Some topological properties of disk and sphere, in Proceedings of the First Canad. Math. Congress, 1945, pp. 285-309. MR 0020254 (8:525g)
  • [13] S. M. Ulam, A collection of mathematical problems, Wiley, New York, 1960. MR 0120127 (22:10884)
  • [14] E. R. van Kampen, Komplexe in euklidischen Räumen and Berichtigung, Abh. Math. Sem. Univ. Hamburg 9 (1932), 72-78 and 152-153.
  • [15] J. W. Walker, A homology version of the Borsuk-Ulam theorem, Amer. Math. Monthly 90 (1983), 465-468. MR 711647 (85e:55006)
  • [16] W.-T. Wu, On the realization of complexes in Euclidean spaces I, Acta Math. Sinica (N.S.) 5 (1955), 505-552; Sci. Sinica 7 (1958), 251-297. MR 0099026 (20:5471)
  • [17] -, A theory of imbedding, immersion, and isotopy of polytopes in a Euclidean space, Science Press, Peking, 1965. MR 0215305 (35:6146)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N10, 05C15, 57M05

Retrieve articles in all journals with MSC: 57N10, 05C15, 57M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1004424-7
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society