Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Pairwise incompatible generic families

Author: Wojciech Guzicki
Journal: Proc. Amer. Math. Soc. 110 (1990), 1049-1053
MSC: Primary 03C62; Secondary 03E25
MathSciNet review: 1019750
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a countable model of $ {\mathbf{Z}}{{\mathbf{F}}^ - }$. There exists a family $ \mathcal{F}$ of $ {2^{{2^\omega }}}$ models of $ {\mathbf{Z}}{{\mathbf{F}}^ - }$ each obtained from $ M$ by adjoining an $ M$-generic family of $ {2^\omega }$ Cohen reals, such that no two distinct models in $ \mathcal{F}$ have a common extension to a model of $ {\mathbf{Z}}{{\mathbf{F}}^ - }$ with the same ordinals.

References [Enhancements On Off] (What's this?)

  • [1] H. Friedman, Large models of countable height, Trans. Amer. Math. Soc. 201 (1975), 227-239. MR 0416903 (54:4966)
  • [2] M. Kaufmann, Mutually generic classes and incompatible extensions, Fund. Math. 121 (1984), 213-218. MR 772449 (86d:03032)
  • [3] A. Mostowski, A remark on models of Gödel-Bernays axioms for set theory sets and classes, Studies in Logic and the Foundations of Mathematics (G. H. Müller, ed.), North-Holland, 1976, pp. 325-340. MR 0446976 (56:5293)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03C62, 03E25

Retrieve articles in all journals with MSC: 03C62, 03E25

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society