A spread relation for entire functions with negative zeros

Author:
Faruk F. Abi-Khuzam

Journal:
Proc. Amer. Math. Soc. **110** (1990), 951-960

MSC:
Primary 30D35

DOI:
https://doi.org/10.1090/S0002-9939-1990-1028282-X

MathSciNet review:
1028282

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a canonical product having only real negative zeros and nonintegral order , and let be the set function defined by . It is shown that if is the set of values of where is a sequence of Polya peaks of and is the deficiency of the value zero of then . This inequality leads to a sharp spread relation for .

**[1]**F. F. Abi-Khuzam,*An abelian theorem for a class of subharmonic functions*, Proc. Amer. Math. Soc.**67**(1977), 253-259. MR**0460667 (57:660)****[2]**-,*The order of entire functions with radially distributed zeros*, Proc. Amer. Math. Soc.**82**(1981), 71-75. MR**603604 (82i:30043)****[3]**A. Baernstein II,*Proof of Edrei's spread conjecture*, Proc. London Math. Soc.**26**(1973), 418-434. MR**0374429 (51:10629)****[4]**A. Edrei,*The deficiencies of meromorphic functions of finite lower order*, Duke Math. J.**31**(1964), 1-22. MR**0158079 (28:1306)****[5]**S. Hellerstein and J. Williamson,*Entire functions with negative zeros and a problem of R. Nevanlinna*, J. Analyse Math.**22**(1969), 233-267. MR**0247087 (40:356)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30D35

Retrieve articles in all journals with MSC: 30D35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1028282-X

Article copyright:
© Copyright 1990
American Mathematical Society