RECURRENT HOMEOMORPHISMS ON \mathbb{R}^2 ARE PERIODIC

LEX G. OVERSTEEGEN AND E. D. TYMCHATYN

(Communicated by James E. West)

Abstract. A homeomorphism $f: (X, d) \to (X, d)$ of a metric space (X, d) onto X is recurrent provided that for each $\varepsilon > 0$ there exists a positive integer n such that f^n is ε-close to the identity map on X. The notion of a recurrent homeomorphism is weaker than that of an almost periodic homeomorphism. The result announced in the title generalizes the theorem of Brechner for almost periodic homeomorphisms and answers a question of R. D. Edwards.

1. Introduction

Let (X, d) be a locally compact metric space. Let id_X denote the identity function on X, and let Z (resp. Z^+) denote the set of integers (resp. non-negative integers). A homeomorphism $g: X \to X$ of X onto X is almost periodic if for each $\varepsilon > 0$ there exists a relatively dense set A in Z (i.e., there exists $N \in Z^+$ such that $[n, n + N] \cap A \neq \emptyset$ for each $n \in Z$) such that $d(g^n, \text{id}_X) < \varepsilon$ for each $m \in A$.

A homeomorphism $g: X \to X$ of X onto X is recurrent if for each $\varepsilon > 0$ there exists $n > 0$ such that $d(g^n, \text{id}_X) < \varepsilon$.

For X compact the following are equivalent [Got]:

1. g is almost periodic.
2. \{ $g^n | n \in Z$ \} is equicontinuous.
3. \{ $g^n | n \in Z$ \} has compact closure in the space of all homeomorphisms of X onto X with compact open topology.

Clearly, periodic homeomorphisms are almost periodic and almost periodic homeomorphisms are recurrent. None of these implications can be reversed. By [Bre], almost periodic homeomorphisms of the plane \mathbb{R}^2 with the usual metric d are periodic. Hence, each almost periodic homeomorphism of the
plane is conjugate either to a rational rotation or to a reflection about a line [Got], [Eil].

The main purpose of this paper is to prove that for the plane \(\mathbb{R}^2 \) with its usual metric \(d \) recurrent homeomorphisms are periodic. This answers a recent question of R. D. Edwards. This result was claimed in [Hac-1], but the proof given there appears to be deficient [Hac-2]. Theorem 1 gives a positive solution to a problem raised by J. Hachigian for \(n = 2 \). The case \(n = 1 \) was done in [Coh-Hac]. We are indebted to Professor Morton Brown for references [Hac-1], [Hac-2], and [Coh-Hac] and for suggesting to us the term “recurrent homeomorphism.”

2. The main result

In this section we will prove the main result of the paper, but first we prove a special case of the main result under somewhat weaker hypotheses.

By a domain we will mean a nonempty, bounded, connected, simply connected, open subset of \(\mathbb{R}^2 \). We denote the closure (resp. boundary) of a set \(A \) by \(\text{Cl}(A) \) (resp. \(\text{Bd}(A) \)). We let \(B(A, \varepsilon) = \{ x \in X | d(x, A) < \varepsilon \} \).

Let \(h: X \rightarrow X \) be a homeomorphism. A set \(A \) in \(X \) is \(h \)-invariant if \(h(A) \subset A \), and \(A \) is completely \(h \)-invariant if \(h(A) = A \). A homeomorphism \(h: X \rightarrow X \) of \(X \) onto \(X \) is arc-recurrent (resp. point-recurrent) provided that for each arc \(A \) (resp. for each point \(p \)) in \(X \) and for each \(\varepsilon > 0 \) there exists a positive integer \(n \) such that \(h^n(A) \subset B(A, \varepsilon) \) (resp. \(d(h^n(p), p) < \varepsilon \)). Clearly, each recurrent homeomorphism is arc-recurrent and each arc-recurrent homeomorphism is point-recurrent. Notice that each irrational rotation of \(\mathbb{R}^2 \) is arc-recurrent but not recurrent. For domains we can prove the following:

Theorem 1. Let \(U \) be a domain and let \(h: \text{Cl}(U) \rightarrow \text{Cl}(U) \) be an arc-recurrent homeomorphism such that \(h|\text{Bd}(U) = \text{id}_{\text{Bd}(U)} \). Then \(h = \text{id}_{\text{Cl}(U)} \).

Proof. Note first that \(h \) is orientation preserving. Let \(\text{Fix}(h) = \{ x \in \text{Cl}(U) | h(x) = x \} \). Suppose \(\text{Fix}(h) \neq \text{Cl}(U) \), or there is nothing to prove. Then \(\text{Bd}(U) \subset \text{Fix}(h) \) and \(\text{Fix}(h) \) is closed. We prove first that \(\text{Fix}(h) \) is not connected. If \(\text{Fix}(h) \) were connected, let \(W \) be a component of \(U \setminus \text{Fix}(h) \). Then \(W \) would be homeomorphic to \(\mathbb{R}^2 \) and \(h|W \) would be an orientation preserving fixed-point free homeomorphism onto \(W \) [Bro-Kis]. By a theorem of Brouwer [And], \(\lim_{n \to \infty} \sup h^n(x) \in \text{Bd}(W) \) for \(x \in W \). This would contradict point-recurrence. Thus, there exists a component \(F' \) of \(\text{Fix}(h) \) such that \(U \setminus \text{Fix}(h) \) separates \(\text{Bd}(U) \) from \(F' \). Let \(F \) be the topological hull of \(F' \) (i.e., \(F \) is the union of \(F' \) together with all of the bounded components of \(\mathbb{R}^2 \setminus F' \)).

By [Bro-Kis], \(h(F) = F \). Since \(h \) is one to one, \(h(U \setminus F) = U \setminus F \).

Let \(T_1 \) be a simple closed curve in \(U \setminus \text{Fix}(h) \) which separates \(F \) from \(\text{Bd}(U) \). Let \(V_1 \) be the component of \(\text{Cl}(U) \setminus T_1 \) which meets \(\text{Bd}(U) \). Let \(A = \{ x \in \text{Cl}(U) | h^n(x) \notin V_1 \text{ for } n \in \mathbb{Z}^+ \} \). Then \(A \) is a closed, \(h \)-invariant set. Since \(h \) is point-recurrent, \(A \) is completely
h-invariant. So $A \subset \text{Cl}(U) \setminus V_1$ is a compact set and $F \subset A$. Let C be the component of F in A. Since $C \cap \text{Fix}(h) \neq \emptyset$, C is invariant. Also, by the same argument as was used in the construction of F, C does not separate the plane.

Claim 1. $F \neq C$.

Proof of Claim 1. Suppose $C = F$. Since the components of a compact Hausdorff space are quasi-components [Eng, p. 438], there exists a simple closed curve T_2 in $U \setminus A$ which separates T_1 and F. Let V_2 be the component of $\text{Cl}(U) \setminus T_2$ which contains V_1. Let

$$H = \bigcup_{n=0}^{\infty} h^n(\text{Cl}(V_2)) \subset \text{Cl}(U) \setminus F.$$

Now, H is h-invariant and $H \cap C = 0$. If H is compact, then H is closed, and hence H is completely h-invariant, since h is point-recurrent. Hence, $\text{Cl}(U) \setminus H \subset \text{Cl}(U) \setminus V_2$ is h-invariant. So $\text{Cl}(U) \setminus H \subset A$. The Boundary Bumping Theorem [Eng, p. 439] states that if G is a proper open subset of a continuum M, and N is a component of G, then $\text{Cl}(G)$ meets $\text{Bd}(G)$. Since C is a component of $\text{Cl}(U) \setminus H$, C meets $\text{Bd}(\text{Cl}(U) \setminus H)$, which is a contradiction. Hence, H is not compact.

By [Hom-Kin], $\{h^n(\text{Cl}(V_2))\}_{n=0}^{\infty}$ is a bulging sequence (i.e., $h^n(\text{Cl}(V_2)) \setminus \bigcup_{i=0}^{n-1} (\text{Cl}(V_2)) \neq \emptyset$ for $n \in \mathbb{Z}^+$), and there exists a point $x \in \text{Cl}(V_2)$ such that $h^n(x) \notin V_2$ for each $n \in \mathbb{Z}^+$. Since h is point-recurrent, $x \in \text{Cl}(V_2) \cap (\text{Cl}(U) \setminus V_2) = T_2$. Clearly, $x \in A$. This contradicts the fact that $T_2 \cap A = \emptyset$. The claim is proved.

Now, $U \setminus C$ is homeomorphic to the open annulus

$$Y = \{x \in \mathbb{R}^2 | 1 < |x| < 2\},$$

since C is a continuum in the domain U which does not separate the plane. Hence [Eps] there is a uniformization $\varphi : U \setminus C \to Y$, i.e., φ is a homeomorphism of $U \setminus C$ onto Y which maps crosscuts onto crosscuts. (A crosscut K of $U \setminus C$ is an arc in $\text{Cl}(U \setminus C)$ such that $K \cap \text{Bd}(U \setminus C)$ is the set of endpoints of K and these endpoints lie in one component of $\text{Bd}(U \setminus C)$.)

We may suppose φ maps the points of $U \setminus C$ near C to points of Y near $S_1 = \{x \in \mathbb{R}^2 | |x| = 1\}$ and φ maps the points of $U \setminus C$ near $\text{Bd}(U)$ to points of Y near $S_2 = \{x \in \mathbb{R}^2 | |x| = 2\}$.

Let $g = \varphi \circ h \circ \varphi^{-1} : Y \to Y$. Then g is a homeomorphism of Y onto Y, and since h is orientation preserving, g is also orientation preserving. By [Eps], g extends to an orientation preserving homeomorphism $G : \text{Cl}(Y) \to \text{Cl}(Y)$. Since $h|\text{Bd}(U) = \text{id}_{\text{Bd}(U)}$ and $\text{Bd}(C) \setminus \text{Fix}(h) \neq \emptyset$, we have $G|S_2 = \text{id}_{S_2}$ and $G|S_1 \neq \text{id}_{S_1}$.

Choose an arc I in $\text{Cl}(U)$ such that I irreducibly joins $\text{Bd}(U)$ to C, $I \cap \text{Bd}(U) = \{a\}$, $I \cap C = \{b\}$, and $h(b) \neq b$. Then there exist points $\alpha \in S_2$,
and $\beta \in S_1$ such that $J = \{\alpha, \beta\} \cup \varphi(I\setminus\{a, b\})$ is an arc in $\text{Cl}(Y)$ which is irreducible from S_1 to S_2. The points α and β are the endpoints of J, $G(\alpha) = \alpha$ and $G(\beta) \neq \beta$. Let $\varepsilon > 0$.

Claim 2. There is a positive integer n such that $G^n(J) \subseteq B(J, \varepsilon)$.

Proof of Claim 2. Choose sequences $\{L_i\}_i$ and $\{R_i\}_i$ of arcs in $\text{Cl}(U)\setminus I$ converging to I such that

1. for each i and j, I separates L_i from R_j in a connected neighborhood W of I in $(U\setminus C) \cup I$,
2. each L_i and each R_j meets each of C and $\text{Bd}(U)$ in exactly one point, and
3. in W, L_{i+1} (resp. R_{i+1}) separates L_i (resp. R_i) from I for each $i \in \mathbb{Z}^+$.

For each $i \in \mathbb{Z}^+$, let L_i^0 (resp. R_i^0) be the arc L_i (resp. R_i) minus its endpoints. Then $\tilde{L}_i = \text{Cl}(\varphi(L_i^0))$ (resp. $\tilde{R}_i = \text{Cl}(\varphi(R_i^0))$) are arcs in $\text{Cl}(Y)$ converging to J such that each \tilde{L}_i and each \tilde{R}_i intersects each of S_1 and S_2 in exactly one point.

Suppose that, for each positive integer n, $G^n(J) \setminus B(J, \varepsilon) \neq \emptyset$. Choose $i \in \mathbb{Z}^+$ such that the component O of $\text{Cl}(Y) \setminus (\tilde{L}_i \cup \tilde{R}_i)$ which contains J is in $B(J, \varepsilon)$, and $G(\beta) \notin O$. Then for each $n > 0$, $G^n(J) \cap (\tilde{L}_i^0 \cup \tilde{R}_i^0) \neq \emptyset$. Hence, $h^n(I) \cap (\tilde{L}_i \cup \tilde{R}_i) \neq \emptyset$ for each n. This contradicts the fact that there exists a positive integer n such that $h^n(I) \subseteq \text{Cl}(U)\setminus (R_i \cup L_i)$. The claim is proved.

Let Z be the universal covering space of the closed annulus $\text{Cl}(Y)$, let $\rho: Z \to \text{Cl}(Y)$ be the covering projection, and let $\tilde{G}: Z \to Z$ be a lifting of G. Then Z is the product of the line with an arc and $\text{Bd}(Z) = Z_1 \cup Z_2$, where Z_1 and Z_2 are lines such that $\rho(Z_i) = S_i$ for $i = 1, 2$, $\tilde{G}|Z_2 = \text{id}_{Z_2}$ and $\tilde{G}|Z_1 \neq \text{id}_{Z_1}$. Assign a natural linear order to the line Z_1. Let \tilde{L}_i, \tilde{J}, and \tilde{R}_i be lifts of L_i, J and R_i, respectively, such that \tilde{O}, the component of \tilde{J} in $Z\setminus (\tilde{L}_i \cup \tilde{R}_i)$, maps homeomorphically onto the set O defined in the proof of Claim 2. Let $\tilde{\beta} \in \tilde{J} \cap \rho^{-1}(\beta)$. Since $G(\beta) \notin O$, $\tilde{G}(\tilde{\beta}) \notin \tilde{O}$. Without loss of generality, $\tilde{\beta} < \tilde{G}(\tilde{\beta})$ in Z_1. Since G, hence \tilde{G}, are orientation preserving homeomorphisms,

$$\tilde{\beta} < \tilde{G}(\tilde{\beta}) < \cdots < \tilde{G}^n(\tilde{\beta})$$

for each $n \in \mathbb{Z}^+$. Hence, for each $n \in \mathbb{Z}^+\setminus\{0\}$, $\tilde{G}^n(\tilde{J}) \cap (\tilde{L}_i \cup \tilde{R}_i) \neq \emptyset$. This implies that $G^n(J) \cap (L_i \cup R_i) \neq \emptyset$ for each $n > 0$, which contradicts Claim 2. This completes the proof of the theorem.

Remark. The hypothesis that $\rho|\text{Bd}(U) = \text{id}_{\text{Bd}(U)}$ in Theorem 1 can be replaced by the assumption that h is orientation preserving and h has at least one accessible fixed point on $\text{Bd}(U)$.
Lemma 2. Let \(h : X \to X \) be a recurrent homeomorphism of the metric space \((X, d)\) onto \(X\), and let \(n \) be a positive integer. Then \(h^n \) is recurrent.

Proof. Let \(\varepsilon > 0 \) be given. There is a positive integer \(k \) such that \(d(h^k, \text{id}_X) < \varepsilon/n \). Then, \(d(h^{n_k}, \text{id}_X) < n \cdot \frac{\varepsilon}{n} = \varepsilon \).

Theorem 3. If \(h : \mathbb{R}^2 \to \mathbb{R}^2 \) is a recurrent homeomorphism of the plane with its usual metric \(d \) onto \(\mathbb{R}^2 \), then \(h \) is periodic.

Proof. Let \(n \) be a positive integer such that \(d(h^n, \text{id}_{\mathbb{R}^2}) < 1 \). By [Bro-1], \(h^n \) is orientation preserving, and by Lemma 2, \(h^n \) is recurrent. Let \(D^0 \) be the open and \(D \) the closed unit ball centered at the origin. Define \(\psi : \mathbb{R}^2 \to D^0 \) by \(\psi(re^{i\theta}) = \frac{r}{1+r}e^{i\theta} \) and \(\varphi' = \psi \circ h^n \circ \psi^{-1} : D^0 \to D^0 \). Since \(d(h^n, \text{id}_{\mathbb{R}^2}) < 1 \), \(\varphi' \) extends to a homeomorphism \(\varphi : D \to D \) such that \(\varphi|_{\partial(D)} = \text{id}_{\partial(D)} \). Since \(d(\varphi^m, \text{id}_D) \leq d(h^{nm}, \text{id}_{\mathbb{R}^2}) \) and \(h^n \) is recurrent, \(\varphi \) is also recurrent. By Theorem 1, \(\varphi = \text{id}_D \). Hence, \(h^n = \text{id}_{\mathbb{R}^2} \).

Remark. Note that the hypothesis of Theorem 3 (i.e., \(h \) is recurrent) is used only to ensure that the induced map \(\varphi \) on the closed unit ball is arc-recurrent and the identity on its boundary. Hence the hypothesis of Theorem 3 can be weakened accordingly.

Added in proof. R. D. Edwards communicated to us that he proved Theorem 3 independently.

References

