Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Recurrent homeomorphisms on $ {\bf R}\sp 2$ are periodic


Authors: Lex G. Oversteegen and E. D. Tymchatyn
Journal: Proc. Amer. Math. Soc. 110 (1990), 1083-1088
MSC: Primary 54H20
DOI: https://doi.org/10.1090/S0002-9939-1990-1037216-3
MathSciNet review: 1037216
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A homeomorphism $ f:(X,d) \to (X,d)$ of a metric space $ (X,d)$ onto $ X$ is recurrent provided that for each $ \varepsilon > 0$ there exists a positive integer $ n$ such that $ {f^n}$ is $ \varepsilon $-close to the identity map on $ X$. The notion of a recurrent homeomorphism is weaker than that of an almost periodic homeomorphism. The result announced in the title generalizes the theorem of Brechner for almost periodic homeomorphisms and answers a question of R. D. Edwards.


References [Enhancements On Off] (What's this?)

  • [And] S. Andrea, On homeomorphisms of the plane which have no fixed points, Abh. Math. Sem. Univ. Hamburg 30 (1967), 61-74. MR 0208588 (34:8397)
  • [Bre] B. L. Brechner, Almost periodic homeomorphisms of $ {E^2}$ are periodic, Pacific J. Math. 59 (1975), 367-374. MR 0388361 (52:9198)
  • [Bro-1] M. Brown, A note on Kister's isotopy, Michigan Math. J. 14 (1967), 95-96. MR 0214077 (35:4929)
  • [Bro-2] -, A new proof of Brouwer's Lemma on translation arcs, Houston J. Math. 10 (1984), 35-41. MR 736573 (85h:54080)
  • [Bro-Kis] M. Brown and J. Kister, Invariance of complementary domains of a fixed point set, Proc. Amer. Math. Soc. 91 (1984), 503-504. MR 744656 (86c:57014)
  • [Coh-Hac] H. Cohen and J. Hachigian, Iterates of continuous functions on I, Proc. Amer. Math. Soc. 17 (1967), 408-411. MR 0211167 (35:2049)
  • [Eil] S. Eilenberg, Sur les transformations périodiques de la surface de sphère, Fund. Math. 22 (1934), 28-41.
  • [Eng] R. Engelking, General topology, Polon. Sci. Publ., Warszawa, 1978.
  • [Eps] D. B. A. Epstein, Prime ends, Proc. London Math. Soc. 42 (1981), 385-414. MR 614728 (83c:30025)
  • [Got] W. H. Gottschalk, Minimal sets: An introduction to topological dynamics, Bull. Amer. Math. Soc. 64 (1958), 336-351. MR 0100048 (20:6484)
  • [Hac-1] J. Hachigian, Homeomorphisms of the unit ball, Proc. Amer. Math. Soc. 19 (1968), 1293-1295. MR 0232374 (38:699)
  • [Hac-2] -, Notices Amer. Math. Soc. 25 (1978), 252.
  • [Hom-Kin] T. Homma and S. Kinoshita, On the regularity of homeomorphisms of $ {E^n}$, J. Math. Soc. Japan 5 (1953), 365-371. MR 0060811 (15:730d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H20

Retrieve articles in all journals with MSC: 54H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1037216-3
Keywords: Recurrent, periodic, homeomorphisms on $ {\mathbb{R}^2}$
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society