Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Index and total curvature of surfaces with constant mean curvature


Authors: Manfredo P. do Carmo and Alexandre M. Da Silveira
Journal: Proc. Amer. Math. Soc. 110 (1990), 1009-1015
MSC: Primary 53C42; Secondary 53A10, 58G30
DOI: https://doi.org/10.1090/S0002-9939-1990-1039255-5
MathSciNet review: 1039255
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an analogue, for surfaces with constant mean curvature in hyperbolic space, of a theorem of Fischer-Colbrie and Gulliver about minimal surfaces in Euclidean space. That is, for a complete surface $ {M^2}$ in hyperbolic $ 3$-space with constant mean curvature 1, the (Morse) index of the operator $ L = \Delta - 2K$ is finite if and only if the total Gaussian curvature is finite.


References [Enhancements On Off] (What's this?)

  • [1] R. Bryant, Surfaces of mean curvature one in hyperbolic spaces, Astérisque (to appear). MR 955072
  • [2] D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math. 82 (1985), 121-132. MR 808112 (87b:53090)
  • [3] R. Gulliver, Index and total curvature of complete minimal surfaces, Proc. Sympos. Pure Math. 44 (1986), 207-211. MR 840274 (87f:53005)
  • [4] R. Gulliver and B. Lawson, The structure of stable minimal hypersurface near a singularity, Proc. Sympos. Pure Math. 44 (1986), 213-237. MR 840275 (87g:53091)
  • [5] A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13-72. MR 0094452 (20:970)
  • [6] A. M. da Silveira, Stability of complete noncompact surfaces with constant mean curvature, Math. Ann. 277 (1987), 629-638. MR 901709 (88h:53053)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C42, 53A10, 58G30

Retrieve articles in all journals with MSC: 53C42, 53A10, 58G30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1039255-5
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society