Bond invariance of rings and localization
Author:
Robert B. Warfield
Journal:
Proc. Amer. Math. Soc. 111 (1991), 1318
MSC:
Primary 16N60; Secondary 16D20, 16D30, 16D60, 16P50
MathSciNet review:
1027102
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is proved that if and are prime Noetherian rings and there exists an bimodule that is finitely generated and torsionfree on each side, then the intersection of the nonzero prime ideals of is nonzero if and only if the same holds for the corresponding intersection in . Consequently, if the right primitive ideals in a given Noetherian ring are precisely the locally closed prime ideals, then the same equivalence holds true for any finite extension ring. Another consequence of the methods used here is the following answer to a question of Braun: If the intersection of the prime ideals in a clique in a Noetherian PI ring is a prime ideal , then is localizable.
 [1]
K.
R. Goodearl and R.
B. Warfield Jr., An introduction to noncommutative Noetherian
rings, London Mathematical Society Student Texts, vol. 16,
Cambridge University Press, Cambridge, 1989. MR 1020298
(91c:16001)
 [2]
Ronald
S. Irving and Lance
W. Small, On the characterization of primitive ideals in enveloping
algebras, Math. Z. 173 (1980), no. 3,
217–221. MR
592369 (82j:17015), http://dx.doi.org/10.1007/BF01159659
 [3]
A.
V. Jategaonkar, Localization in Noetherian rings, London
Mathematical Society Lecture Note Series, vol. 98, Cambridge
University Press, Cambridge, 1986. MR 839644
(88c:16005)
 [4]
Edward
Letzter, Primitive ideals in finite extensions of Noetherian
rings, J. London Math. Soc. (2) 39 (1989),
no. 3, 427–435. MR 1002455
(90f:16013), http://dx.doi.org/10.1112/jlms/s239.3.427
 [5]
J.
C. McConnell and J.
C. Robson, Noncommutative Noetherian rings, Pure and Applied
Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With
the cooperation of L. W. Small; A WileyInterscience Publication. MR 934572
(89j:16023)
 [6]
C.
Moeglin, Idéaux primitifs des algèbres
enveloppantes, J. Math. Pures Appl. (9) 59 (1980),
no. 3, 265–336 (French). MR 604473
(83i:17008)
 [1]
 K. R. Goodearl and R. B. Warfield, Jr., An introduction to noncommutative Noetherian rings, London Math. Soc. Student Text Ser., vol. 16, Cambridge Univ. Press, Cambridge, 1989. MR 1020298 (91c:16001)
 [2]
 R. S. Irving and L. W. Small, On the characterisation of primitive ideals in enveloping algebras, Math. Z. 173 (1980), 217221. MR 592369 (82j:17015)
 [3]
 A. V. Jategaonkar, Localization in Noetherian rings, London Math. Soc. Lecture Note Ser., vol. 98, Cambridge Univ. Press, Cambridge, 1986. MR 839644 (88c:16005)
 [4]
 E. S. Letzter, Primitive ideals in finite extensions of Noetherian rings, J. London Math. Soc. (2) 39 (1989), 427435. MR 1002455 (90f:16013)
 [5]
 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, WileyInterscience, New York, 1987. MR 934572 (89j:16023)
 [6]
 C. Moeglin, Idéaux primitifs des algèbres enveloppantes, J. Math. Pures Appl. 59 (1980), 265336. MR 604473 (83i:17008)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
16N60,
16D20,
16D30,
16D60,
16P50
Retrieve articles in all journals
with MSC:
16N60,
16D20,
16D30,
16D60,
16P50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199110271028
PII:
S 00029939(1991)10271028
Keywords:
Noetherian ring,
Noetherian bimodule,
bond,
prime ideal,
primitive ideal,
ring,
locally closed,
ring extension,
clique,
localization,
PI ring
Article copyright:
© Copyright 1991
American Mathematical Society
