Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Totally real sets in $ {\bf C}\sp 2$

Author: H. Alexander
Journal: Proc. Amer. Math. Soc. 111 (1991), 131-133
MSC: Primary 32E20
MathSciNet review: 1031447
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish the polynomial convexity of certain totally real disks and of annuli in the unit torus satisfying a topological condition.

References [Enhancements On Off] (What's this?)

  • [1] B. Jöricke, Removable singularities of CR-functions, Ark. Mat. 26 (1988), 117-143. MR 948284 (89j:32021)
  • [2] G. Lupacciolu, A theorem of holomorphic extension of CR-functions, Pacific J. Math. 128 (1986), 177-191. MR 850675 (87k:32026)
  • [3] R. Nirenberg and R. O. Wells, Approximation theorems on differentiable submanifolds of a complex manifold, Trans. Amer. Math. Soc. 142 (1969), 15-35. MR 0245834 (39:7140)
  • [4] J. P. Rosay and E. L. Stout, Radó's theorem for CR-functions, Proc. Amer. Math. Soc. 106 (1989), 1017-1026. MR 964461 (89m:32028)
  • [5] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [6] G. Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259-289. MR 0146407 (26:3929)
  • [7] E. L. Stout, Analytic continuation and boundary continuity of functions of several complex variables, Proc. Royal Soc. Edinburgh 89A (1981), 63-74. MR 628129 (83c:32021)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32E20

Retrieve articles in all journals with MSC: 32E20

Additional Information

Keywords: Polynomially convex hull, totally real, torus
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society