Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Second-derivative estimates for solutions of two-dimensional Monge-Ampère equations


Author: Friedmar Schulz
Journal: Proc. Amer. Math. Soc. 111 (1991), 101-110
MSC: Primary 35B45; Secondary 35J60
DOI: https://doi.org/10.1090/S0002-9939-1991-1031671-1
MathSciNet review: 1031671
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Heinz-Lewy type a priori estimates are derived for the absolute values of the second derivatives of solutions $ z(x,y) \in {C^{1,1}}(\Omega )$ of Monge-Ampère equations of the general form

$\displaystyle Ar + 2Bs + Ct + (rt - {s^2}) = E$

in the interior of the domain $ \Omega $. The coefficients $ A,B,C,E$ depend in particular on the gradient of $ z(x,y)$ and satisfy certain structural conditions.

References [Enhancements On Off] (What's this?)

  • [1] E. Heinz, Über gewisse elliptische Systeme von Differentialgleichungen zweiter Ordnung mit Anwendung auf die Monge-Amperèsche Gleichung, Math Ann. 131 (1956), 411-428. MR 0123809 (23:A1131)
  • [2] -, Neue a-priori-Abschätzungen für den Ortsvektor einer Fläche positiver Gaußscher Krümmung durch ihr Linienelement, Math. Z. 74 (1960), 129-157. MR 0116294 (22:7089)
  • [3] -, Interior estimates for solutions of elliptic Monge-Ampère equations, in Partial Differential Equations, Proceedings of Symposia in Pure Mathematics, vol. IV (Berkeley, 1960), pp. 149-155. MR 0157100 (28:340)
  • [4] -, Über das Nichtverschwinden der Funktionaldeterminante bei einer Klasse eineindeutiger Abbildungen, Math. Z. 105 (1968), 87-89. MR 0226196 (37:1786)
  • [5] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692. MR 1563404
  • [6] -, A priori limitations for solutions of Monge-Ampère equations, Trans. Amer. Math. Soc. 37 (1935), 417-434. MR 1501794
  • [7] F. Schulz, A priori estimates for solutions of Monge-Ampère equations, Arch. Rational Mech. Anal. 89 (1985), 123-133. MR 786542 (86g:35070)
  • [8] -, Univalent solutions of elliptic systems of Heinz-Lewy type, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6 (1989), 347-361. MR 1030855 (91d:35066)
  • [9] F. Schulz and L.-Y. Liao, Regularity of solutions of two-dimensional Monge-Ampère equations, Trans. Amer. Math. Soc. 307 (1988), 271-277. MR 936816 (89e:35053)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35B45, 35J60

Retrieve articles in all journals with MSC: 35B45, 35J60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1031671-1
Keywords: Fully nonlinear elliptic equations, Monge-Ampère equations, quasilinear elliptic systems, Heinz-Lewy systems, regularity, a priori estimates, characteristics, uniformization, conformal mappings, convex surfaces
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society