Index of faithful normal conditional expectations

Author:
Sze-Kai Tsui

Journal:
Proc. Amer. Math. Soc. **111** (1991), 111-118

MSC:
Primary 46L37; Secondary 46L10, 46L35

MathSciNet review:
1033962

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a faithful normal conditional expectation of a factor onto its subfactor , and the index of be denoted by . We investigate the question: For two such faithful normal conditional expectations of onto , when does hold? In this paper we answer this question completely for type factor . We also derive a tensor product formula for index, i.e., . For any we construct uncountable nonisomorphic faithful normal conditional expectations of a factor onto its subfactor with such that both of and , are of type or or . For each we exhibit a type factor and its subfactor and a faithful normal conditional expectation such that .

**[1]**D. Bures and H.-S. Yin,*Shifts on the hyperfinite factor of type*, preprint.**[2]**Marie Choda,*Shifts on the hyperfinite 𝐼𝐼₁-factor*, J. Operator Theory**17**(1987), no. 2, 223–235. MR**887220****[3]**A. Connes,*On the spatial theory of von Neumann algebras*, J. Funct. Anal.**35**(1980), no. 2, 153–164. MR**561983**, 10.1016/0022-1236(80)90002-6**[4]**Uffe Haagerup,*Operator-valued weights in von Neumann algebras. I*, J. Funct. Anal.**32**(1979), no. 2, 175–206. MR**534673**, 10.1016/0022-1236(79)90053-3**[5]**V. F. R. Jones,*Index for subfactors*, Invent. Math.**72**(1983), no. 1, 1–25. MR**696688**, 10.1007/BF01389127**[6]**Hideki Kosaki,*Extension of Jones’ theory on index to arbitrary factors*, J. Funct. Anal.**66**(1986), no. 1, 123–140. MR**829381**, 10.1016/0022-1236(86)90085-6**[7]**F. J. Murray and J. Von Neumann,*On rings of operators*, Ann. of Math. (2)**37**(1936), no. 1, 116–229. MR**1503275**, 10.2307/1968693**[8]**Robert T. Powers,*An index theory for continuous semigroups of ∗-endomorphisms of 𝔅(ℌ) and ℑℑ₁ factors*, Operator algebras and mathematical physics (Iowa City, Iowa, 1985), Contemp. Math., vol. 62, Amer. Math. Soc., Providence, RI, 1987, pp. 447–460. MR**878394**, 10.1090/conm/062/878394**[9]**Marc A. Rieffel and Alfons van Daele,*The commutation theorem for tensor products of von Neumann algebras*, Bull. London Math. Soc.**7**(1975), no. 3, 257–260. MR**0383096****[10]**S. Stratila,*Modular theory in operator algebras*, Abacus Press, 1981.**[11]**J. Tomiyama,*Tensor product and projections of norm one in von Neumann algebras*, Lecture Notes, Kobenhavn Univ., 1971.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46L37,
46L10,
46L35

Retrieve articles in all journals with MSC: 46L37, 46L10, 46L35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1033962-7

Keywords:
Index of faithful normal conditional expectations,
index of tensor products,
spatial derivatives,
relative commutants

Article copyright:
© Copyright 1991
American Mathematical Society