Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on the Jacobian condition and two points at infinity

Authors: James H. McKay and Stuart Sui Sheng Wang
Journal: Proc. Amer. Math. Soc. 111 (1991), 35-43
MSC: Primary 14E07; Secondary 13B10, 14E20
MathSciNet review: 1034887
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If two polynomials $ F$ and $ G$ satisfy the Jacobian condition and the Newton polygon of $ F$ has an edge of negative slope, then the sum of terms of $ F$ along this edge has at most two distinct irreducible factors and their exponents must be different. Moreover, the slope is either a (negative) integer and the edge touches the $ y$-axis or a (negative) Egyptian fraction and the edge touches the $ x$-axis. Furthermore, there is an elementary automorphism which reduces the size of the Newton polygon.

References [Enhancements On Off] (What's this?)

  • [1] S. S. Abhyankar, Lectures on expansion techniques in algebraic geometry, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 57, Tata Institute of Fundamental Research, Bombay, 1977. Notes by Balwant Singh. MR 542446
  • [2] Harry Appelgate and Hironori Onishi, The Jacobian conjecture in two variables, J. Pure Appl. Algebra 37 (1985), no. 3, 215–227. MR 797863, 10.1016/0022-4049(85)90099-4
  • [3] Z. Charzyński, J. Chadzyński and P. Skibiński, A contribution to Keller's Jacobian conjecture, Seminar on deformations (Proceedings, Łódź--Warsaw 1982/84, Lecture Notes in Mathematics 1165), Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo, 1985, pp. 36-51.
  • [4] L. G. Makar-Limanov, 1969, unpublished.
  • [5] James H. McKay and Stuart Sui Sheng Wang, An elementary proof of the automorphism theorem for the polynomial ring in two variables, J. Pure Appl. Algebra 52 (1988), no. 1-2, 91–102. MR 949340, 10.1016/0022-4049(88)90137-5
  • [6] T. T. Moh, On the Jacobian conjecture and the configurations of roots, J. Reine Angew. Math. 340 (1983), 140–212. MR 691964
  • [7] A. G. Vitushkin, On polynomial transformations of 𝐶ⁿ, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 415–417. MR 0369367

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14E07, 13B10, 14E20

Retrieve articles in all journals with MSC: 14E07, 13B10, 14E20

Additional Information

Keywords: Jacobian condition (Jacobian hypothesis), Newton polygon, points at infinity
Article copyright: © Copyright 1991 American Mathematical Society