WEAKLY INFINITE-DIMENSIONAL PRODUCT SPACES

DALE M. ROHM

(Communicated by James E. West)

ABSTRACT. It is shown that the product of a weakly infinite-dimensional compactum with a C-space is weakly infinite-dimensional. Some observations on the coincidence of weak infinite-dimensionality and property C are made. The question of when a weakly infinite-dimensional space has weakly infinite-dimensional product with all zero-dimensional spaces is investigated.

1. Introduction

By a space we mean a metric space, and by the dimension of a space we mean the Lebesgue covering dimension, for example as presented in [E]. In this sequel paper, we continue the line of investigation, initiated in [R2], into when the product of two weakly infinite-dimensional spaces is itself weakly infinite-dimensional. The reader is referred to that source for a more complete discussion of the history of this question and specifically for the definitions of countable-dimensional, weakly infinite-dimensional, and strongly infinite-dimensional spaces, as well as these of property C, C-space, and C-refinement.

While it is known that every countable-dimensional space, hence every finite-dimensional space, has property C and that every C-space is weakly infinite-dimensional, R. Pol has constructed a compact C-space which is not countable-dimensional [P1]. It remains unknown whether or not every weakly infinite-dimensional space must have property C.

Similarly, while it is also known that the product of two C-spaces can be strongly infinite-dimensional [EP], [P2], it is still unknown whether or not the product of two weakly infinite-dimensional compacta must always be weakly infinite-dimensional. On the other hand, the productivity of property C for compacta has been established [R2].

Theorem. The product of two C-spaces, one of which is compact, is itself a C-space.

In this paper we investigate the productivity of weak infinite-dimensionality for compacta, showing productivity for a large, perhaps the entire, class of...
weakly infinite-dimensional factors. Finally, some observations concerning the coincidence of weak infinite-dimensionality and property C are given, along with some remarks on when a weakly infinite-dimensional space has weakly infinite-dimensional product with all zero-dimensional spaces.

2. Results and proofs

In proving our main result, we will make use of the following characterization of weak infinite-dimensionality in terms of binary open covers:

Lemma 1. A space X is weakly infinite-dimensional if and only if, for any sequence of binary open covers \(\{ U_n : n \in \mathbb{N} \} \) of X of the form $U_n = \{ V_n^1, V_n^2 \}$, there exists a precise pairwise disjoint open refinement \mathcal{V}_n of each U_n—i.e.:

1. For each $n \in \mathbb{N}$, $\mathcal{V}_n = \{ V_n^1, V_n^2 \}$, with V_n^1 and V_n^2 open in X.
2. For each $n \in \mathbb{N}$, $V_n^1 \cap V_n^2 = \emptyset$.
3. For each $n \in \mathbb{N}$, $V_n^1 \subset U_n$ and $V_n^2 \subset U_n$—so that the $\bigcup \{ \mathcal{V}_n : n \in \mathbb{N} \}$ forms an open cover of X.

As the proof is elementary, involving only complete normality, we omit it. For this characterization and further generalizations of the notion, we refer the reader to [R1, Chapter 3].

Theorem 1. The product of a weakly infinite-dimensional compactum with a C-space is again weakly infinite-dimensional.

Proof. Given a C-space X and a weakly infinite-dimensional compactum Y, we show that the product $X \times Y$ is weakly infinite-dimensional. Let a countable collection of binary open covers of $X \times Y$ be given. We rewrite this collection as a sequence of such countable collections

\[\{ \mathcal{U}_{m,n} : n \in \mathbb{N} \} : m \in \mathbb{N} \],

where each binary open cover has the form

\[\mathcal{U}_{m,n} = \{ U_{m,n}^1, U_{m,n}^2 \} \).

Fix $m \in \mathbb{N}$, let $x \in X$ be fixed but arbitrary, and let $\pi : X \times Y \to X$ denote the projection mapping. For each $n \in \mathbb{N}$ and $\alpha \in \{1, 2\}$, we set

\[U_{m,n}^\alpha(x) = U_{m,n}^\alpha \cap \pi^{-1}(x) \quad \text{and} \quad \mathcal{U}_{m,n}(x) = \{ U_{m,n}^1(x), U_{m,n}^2(x) \} \).

Thus, $\mathcal{U}_{m,n}(x)$ is a binary open cover of $\pi^{-1}(x)$ for each $n \in \mathbb{N}$. Since $\pi^{-1}(x)$ is homeomorphic to Y, we will not, when the context is clear, distinguish between $\pi^{-1}(x)$ as a subspace of $X \times Y$, and Y.

In particular, $\pi^{-1}(x)$ is weakly infinite-dimensional, so that, using Lemma 1, we can choose subsets $V_{m,n}^1(x)$ and $V_{m,n}^2(x)$ of $\pi^{-1}(x)$ for each $n \in \mathbb{N}$ with

1. $V_{m,n}^1(x)$ and $V_{m,n}^2(x)$ open in $\pi^{-1}(x)$
2. $V_{m,n}^{1}(x) \cap V_{m,n}^{2}(x) = \emptyset$

3. $V_{m,n}^{1}(x) \subseteq U_{m,n}^{1}(x)$ and $V_{m,n}^{2}(x) \subseteq U_{m,n}^{2}(x)$,

so that $\{V_{m,n}^{\alpha}(x) : \alpha = 1, 2, n \in \mathbb{N}\}$ is a cover of $\pi^{-1}(x)$. We then use the compactness of $\pi^{-1}(x)$ to extract a finite subcover

$$\{V_{m,n}^{\alpha}(x) : \alpha = 1, 2, n = 1, \ldots, r_{m}(x)\}$$

for some positive integer $r_{m}(x)$, and, using normality, we “shrink” the elements of the finite subcover so that

$$V_{m,n}^{\alpha}(x) \subseteq \overline{V_{m,n}^{\alpha}(x)} \subseteq U_{m,n}^{\alpha}(x)$$

for each $\alpha \in \{1, 2\}$ and $n \in \{1, \ldots, r_{m}(x)\}$.

Next, we use an idea of Dieudonné [D] to construct an open cover of X.

Claim. For each $n \in \{1, \ldots, r_{m}(x)\}$, there is an open neighborhood $W_{m,n}(x)$ of x in X so that, for any $x' \in W_{m,n}(x)$ and $\alpha \in \{1, 2\}$, the inclusions

$$V_{m,n}^{\alpha}(x) \subseteq \overline{V_{m,n}^{\alpha}(x)} \subseteq U_{m,n}^{\alpha}(x')$$

hold.

Indeed if not, then we could choose a sequence (x_k, y_k) in $X \times Y$ with $x_k \to x$ where, without loss of generality, for each $k \in \mathbb{N}$,

$$y_k \notin \overline{V_{m,n}^{1}(x)} \quad \text{but} \quad y_k \notin U_{m,n}^{1}(x_k).$$

By the compactness of Y, passing to a convergent subsequence if necessary, we have

$$y_k \to y \in \overline{V_{m,n}^{1}(x)} \subseteq U_{m,n}^{1}(x),$$

so that

$$(x_k, y_k) \to (x, y) \in U_{m,n}^{1}.$$ But then, since $U_{m,n}^{1}$ is open in $X \times Y$, we see that, for all sufficiently large $k,$

$$(x_k, y_k) \in U_{m,n}^{1}, \quad \text{so that} \ y_k \in U_{m,n}^{1}(x_k),$$

which is a contradiction.

We construct such an open set $W_{m,n}(x)$ for each $n \in \{1, \ldots, r_{m}(x)\}$ and set

$$W_{m}(x) = \bigcap\{W_{m,n}(x) : n = 1, \ldots, r_{m}(x)\}.$$ Then, $W_{m}(x)$ is an open neighborhood of $x \in X$, so that

$$\{W_{m}(x) \times V_{m,n}^{\alpha}(x) : \alpha = 1, 2, n = 1, \ldots, r_{m}(x)\}$$

is an open cover of $\pi^{-1}(x)$ in $X \times Y$. We form the open cover

$$\mathcal{W}_{m} = \{W_{m}(x) : x \in X\}$$

of X by constructing such a neighborhood $W_{m}(x)$ for each $x \in X$.

In this manner, we construct such an open cover \(\mathcal{U}_m \) of \(X \) for each \(m \in \mathbb{N} \). Since \(X \) has property \(C \), we can choose a \(C \)-refinement \(\mathcal{E}_m \) of \(\mathcal{U}_m \) for each \(m \in \mathbb{N} \) so that the \(\bigcup \{ \mathcal{E}_m : m \in \mathbb{N} \} \) covers \(X \). Since each \(\mathcal{E}_m \) refines \(\mathcal{U}_m \), we can choose a function \(\phi_m : \mathcal{E}_m \rightarrow X \) for each \(m \in \mathbb{N} \) so that if \(O \in \mathcal{E}_m \) we have

\[
O \subset W_m(\phi_m(O)).
\]

Thus, if \(n \in \{1, \ldots, r_m(\phi_m(O))\} \) for some \(O \in \mathcal{E}_m \), then

\[
O \subset W_m(\phi_m(O)) \subset W_{m,n}(\phi_m(O)),
\]

so that for \(\alpha \in \{1, 2\} \) we have

\[
O \times V_{m,n}^\alpha(\phi_m(O)) \subset W_{m,n}(\phi_m(O)) \times V_{m,n}^\alpha(\phi_m(O)) \subset U_{m,n}^\alpha.
\]

For each \(m, n \in \mathbb{N} \) and \(\alpha \in \{1, 2\} \), we define

\[
C_{m,n}^\alpha = \bigcup \{ O \times V_{m,n}^\alpha(\phi_m(O)) : n \in \{1, \ldots, r_m(\phi_m(O))\} \}
\]

and set

\[
\mathcal{E}_{m,n}^\alpha = \{ C_{m,n}^1, C_{m,n}^2 \}.
\]

If \((x, y) \in C_{m,n}^\alpha \), then there exists \(O \in \mathcal{E}_m \) with \(n \in \{1, \ldots, r_m(\phi_m(O))\} \) so that

\[
(x, y) \in O \times V_{m,n}^\alpha(\phi_m(O)) \subset U_{m,n}^\alpha.
\]

Therefore, \(\mathcal{E}_{m,n}^\alpha \) is a precise open refinement of \(\mathcal{U}_{m,n} \). Furthermore, since the elements of \(\mathcal{E}_m \) are pairwise disjoint, and since

\[
V_{m,n}^1(\phi_m(O)) \cap V_{m,n}^2(\phi_m(O)) = \emptyset
\]

for any \(O \in \mathcal{E}_m \) with \(n \in \{1, \ldots, r_m(\phi_m(O))\} \), we see that

\[
C_{m,n}^1 \cap C_{m,n}^2 = \emptyset.
\]

Finally, since \(\bigcup \{ \mathcal{E}_m : m \in \mathbb{N} \} \) covers \(X \), given a point \((x, y) \in X \times Y\) we can find \(m \in \mathbb{N} \) and \(O \in \mathcal{E}_m \) so that \(x \in O \). Since \(\pi^{-1}(\phi_m(O)) \) is covered by

\[
\{ V_{m,n}^\alpha(\phi_m(O)) : \alpha = 1, 2, n = 1, \ldots, r_m(\phi_m(O)) \},
\]

we can also find \(\alpha \in \{1, 2\} \) and \(n \in \{1, \ldots, r_m(\phi_m(O))\} \) so that

\[
y \in V_{m,n}^\alpha(\phi_m(O)).
\]

Therefore, we see that

\[
(x, y) \in O \times V_{m,n}^\alpha(\phi_m(O)) \subset C_{m,n}^\alpha,
\]

so that \(\bigcup \{ \mathcal{E}_{m,n} : m, n \in \mathbb{N} \} \) forms an open cover of \(X \times Y \). By Lemma 1, we conclude that \(X \times Y \) is weakly infinite-dimensional. \(\square \)

We single out two special cases of separate interest. In the second corollary, which we were unable to find in the literature, \(I \) denotes the closed unit interval.
Corollary 1. The product of R. Pol's uncountable-dimensional compact C-space with any weakly infinite-dimensional compactum is again weakly infinite-dimensional.

Corollary 2. \(X \) is a weakly infinite-dimensional compactum if and only if \(X \times I \) is a weakly infinite-dimensional compactum.

Question 1. If \(X \times I \) is weakly infinite-dimensional, then must \(X \) have property C?

In the final part of this note, we consider the following question.

Question 2. What properties must an infinite-dimensional space possess to ensure that its product with every zero-dimensional, hence countable-dimensional, space is a C-space (is weakly infinite-dimensional)?

Necessarily, such a space must itself be a C-space (weakly infinite-dimensional), but it is also known that this is not a sufficient condition for productivity with zero-dimensional factors [P]. On the other hand, as the following example shows, while we have shown that compactness of a C-space (weakly infinite-dimensional) factor is a sufficient condition for such productivity, it is not a necessary condition.

Recall that R. Pol's compactum, when constructed as a subspace of the Hilbert cube, has the form \(P = X \cup B_1 \cup B_2 \), where \(X \) is a topologically complete, totally disconnected, strongly infinite-dimensional subspace of the Hilbert cube with countable-dimensional remainder \(B_1 \cup B_2 = P/X \). So constructed, \(B_1 \) and \(B_2 \) are disjoint Bernstein sets; i.e., all compact subsets of \(B_1 \) and \(B_2 \) are countable [P2]. It is known that \(B_1 \cup X \) and \(B_2 \cup X \) are noncompact C-spaces [EP].

We will also need the following classical result.

Lemma 2 [E, 4.3.6]. If \(f : X \to Y \) is a closed mapping between spaces \(X \) and \(Y \) where \(\dim f^{-1}(y) \leq 0 \) for each \(y \in Y \), then \(\dim X \leq \dim Y \).

Theorem 2. Given \(B_i \), where \(i \in \{1, 2\} \), and \(X \) as above, the product of \(B_i \cup X \) with any zero-dimensional space \(Z \) is a C-space and thus is weakly infinite-dimensional.

Proof. The proof follows ideas of [EP] and [P2]. We assume, without loss of generality, that \(i = 1 \), set \(X_1 = (B_1 \cup X) \), and let \(Z \) be any zero-dimensional space. We will show that \(X_1 \times Z \) has property C as a subspace of \(P \times Z \).

Given a sequence \(\{ \mathcal{U}_n : n \in \mathbb{N} \} \) of covers of \(X_1 \times Z \) by open subsets of \(P \times Z \), for each fixed \(n \in \mathbb{N} \) we set

\[
K_n = (P \times Z) \setminus \bigcup \{ U : U \in \mathcal{U}_n \}.
\]

Each \(K_n \) is a closed subset of \(P \times Z \) contained entirely in \(B_2 \times Z \). Since the restricted projection \(\pi : K_n \to Z \) is a closed mapping with countable, hence at most zero-dimensional, fibers, we apply Lemma 2 to see that \(\dim K_n \leq 0 \).
Being a countable union of closed zero-dimensional sets,
\[
\dim \bigcup\{K_n : n \in \mathbb{N}\} \leq 0.
\]
Thus, we can choose an at most zero-dimensional \(G_\delta\)-subset \(A \subset P \times Z\) [E, 4.1.19] so that
\[
\bigcup\{K_n : n \in \mathbb{N}\} \subset A.
\]
Then, we also have
\[
(P \times Z) \setminus A \subset (P \times Z) \setminus \bigcup\{K_n : n \in \mathbb{N}\}
\]
\[
\subset \bigcap\{(P \times Z) \setminus K_n : n \in \mathbb{N}\}
\]
\[
\subset \bigcap\{\cup\{U : U \in \mathcal{U}_n\} : n \in \mathbb{N}\},
\]
and, in particular, for each \(n \in \mathbb{N}\) we see that \(\mathcal{U}_n\) is an open cover of \((P \times Z) \setminus A\) in \(P \times Z\). Since \(P\) is a compact \(C\)-space, \(P \times Z\) is a \(C\)-space, and, being an \(F_\sigma\) subset of \(P \times Z\), \((P \times Z) \setminus A\) is also a \(C\)-space [AG]. Thus, we can choose a \(C\)-refinement \(\mathcal{V}_n\) of \(\mathcal{U}_n\) for each \(n > 1\) so that the \(\bigcup\{\mathcal{V}_n : n > 1\}\) is a cover of \((P \times Z) \setminus A\), hence also a cover of \((X_1 \times Z) \setminus A\).

Finally, since \((X_1 \times Z) \cap A \subset A\), we see that \((X_1 \times Z) \cap A\) can be at most zero-dimensional. Therefore, we can choose a \(C\)-refinement \(\mathcal{Y}_1\) of the remaining cover \(\mathcal{W}_1\), so that \(\mathcal{Y}_1\) still covers \((X_1 \times Z) \cap A\). Then, the \(\bigcup\{\mathcal{Y}_n : n \in \mathbb{N}\}\) is now a cover of all of \(X_1 \times Z\), which completes the proof that \(X_1 \times Z\) has property \(C\). \(\square\)

References

Department of Mathematics and Computing, The University of Wisconsin-Stevens Point, Stevens Point, Wisconsin 54481