Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Centralizing mappings on von Neumann algebras


Author: Matej Brešar
Journal: Proc. Amer. Math. Soc. 111 (1991), 501-510
MSC: Primary 46L57; Secondary 16E50, 46L10, 46L40
DOI: https://doi.org/10.1090/S0002-9939-1991-1028283-2
MathSciNet review: 1028283
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a ring with center $ Z(R)$. A mapping $ F$ of $ R$ into itself is called centralizing if $ F(x)x - xF(x) \in Z(R)$ for all $ x \in R$. The main result of this paper states that every additive centralizing mapping $ F$ on a von Neumann algebra $ R$ is of the form $ F(x) = cx + \zeta (x),x \in R$, where $ c \in Z(R)$ and $ \zeta $ is an additive mapping from $ R$ into $ Z(R)$. We also consider $ \alpha $-derivations and some related mappings, which are centralizing on rings and Banach algebras


References [Enhancements On Off] (What's this?)

  • [1] R. Awtar, Lie and Jordan structures in prime rings with derivations, Proc. Amer. Math. Soc. 41 (1973), 67-74. MR 0318233 (47:6780)
  • [2] H. E. Bell and W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), 92-101. MR 879877 (88h:16044)
  • [3] -, Semiderivations and commutativity in prime rings, Canad. Math. Bull. 31 (1988), 500-508. MR 971579 (89k:16063)
  • [4] M. Brešar, Centralizing mappings and derivations in prime rings, preprint.
  • [5] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), 7-16. MR 1028284 (91a:16026)
  • [6] -, On some additive mappings in rings with involution, Aequationes Math. 38 (1989), 178-185. MR 1018911 (90j:16076)
  • [7] L. O. Chung and J. Luh, On semicommuting automorphisms of rings, Canad. Math. Bull. 21 (1978), 13-16. MR 0480607 (58:763)
  • [8] I. N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976. MR 0442017 (56:406)
  • [9] Y. Hirano, A. Kaya and H. Tominaga, On a theorem of Mayne, Math. J. Okayama Univ. 25 (1983), 125-132. MR 719626 (85c:16043)
  • [10] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, vol. 1, Academic Press, London, 1983; vol. 2. Academic Press, London, 1986.
  • [11] I. Kaplansky, Rings of operators, Benjamin, New York, 1968. MR 0244778 (39:6092)
  • [12] C. Lanski, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134 (1988), 275-297. MR 961236 (89j:16051)
  • [13] W. S. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584. MR 0238897 (39:257)
  • [14] M. Mathieu, Elementary operators on prime $ {C^ * }$-algebras I, Math. Ann. 284 (1989), 223-244. MR 1000108 (90h:46092)
  • [15] J. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1976), 113-115. MR 0419499 (54:7520)
  • [16] -, Ideals and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 86 (1982), 211-212; Erratum 89 (1983), 187. MR 667275 (83k:16025)
  • [17] -, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), 122-126. MR 725261 (85h:16039)
  • [18] C. R. Miers, Centralizing mappings of operator algebras, J. Algebra 59 (1979), 56-64. MR 541670 (80j:46096)
  • [19] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. MR 0095863 (20:2361)
  • [20] A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170. MR 0233207 (38:1530)
  • [21] M. Thomas, The image of a derivation is contained in the radical, Ann. Math. 128 (1988), 435-460. MR 970607 (90d:46075)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L57, 16E50, 46L10, 46L40

Retrieve articles in all journals with MSC: 46L57, 16E50, 46L10, 46L40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1028283-2
Keywords: Centralizing mapping, commuting mapping, derivation, automorphism, $ \alpha $-derivation, von Neumann algebra, prime ring, semiprime ring, Banach algebra
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society